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Report Overview

→ Strand 1 - Hierarchical Decomposition for Allocation and

Routing Problems

- Strand 2 - Intelligent Agents & Hierarchical Authority

- Strand 3 - Hierarchical Reinforcement Learning

- Strand 4 - The Role of Expert Feedback and Imitation

Learning

- Strand 5 - Hierarchical Emergence, Evolution & Adaptation
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Assignment Problems



Assignment Problem

T - set of Tasks, A - set of Agents, V - values

max
∑
i∈A

∑
j∈T

Vijxij (1)

∑
j∈T

xij ≤ 1 for i ∈ A (2)

∑
i∈A

xij = 1 for j ∈ T (3)

x ∈ {0, 1} (4)
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Bilevel Optimisation



Bilevel Optimisation

Many situtations involve the analysis of several objectives that

reflect a hierarchy of decision-makers.

Multilevel optimization techniques partition control over

decision variables amongst the levels. Decisions at each level may

be constrained by decisions at other levels, and objectives for

each level may account for decisions made at other levels.

In practice, multilevel problems are difficult to solve - most of the

literature focused on bilevel programs [2].
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Bilevel Optimisation

maxx∈X ,yF (x , y) (5)

s.t.G (x , y) ≤ 0 (6)

y ∈ P (7)

where

P(x) = arg miny∈Y f (x , y) (8)

g(x , y) ≤ 0 (9)

P(x) defines a lower-level problem, which may have multiple

solutions.

Here x is the primary upper-level decision, and y is the anticipated

lower-level decision.
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Pyomo Modelling

Pyomo is a Python-based open-source software package that

supports a diverse set of optimization capabilities for formulating,

solving, and analyzing optimization models.

Pyomo can be used to define general symbolic problems, create

specific problem instances, and solve these instances using

commercial and open-source solvers.
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Pyomo Modelling Example

# Top level

m = ConcreteModel()

m.x = Var(bounds=(1,2))

m.y = Var(bounds=(1,2))

m.o = Objective(expr=m.x + m.y, sense=minimize)

# Sub Level

m.sub = SubModel(fixed=m.x)

m.sub.z = Var(bounds=(-1,1))

m.sub.o = Objective(expr=m.x*m.sub.z, sense=maximize)

m.sub.c = Constraint(expr=model.y + model.sub.z <= 2)

instance = m.create_instance()

results = opt.solve(instance)
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Semi-Autonomous AP (SAAP) [1]

The Semi-Autonomous Assignment Problem (SAAP) adds Selfish

behaviour in assignment scenarios.

Here some agents are autonomous (or Free) and some are

controlled, and the central planner makes an assignment only for

the controlled agents.

These autonomous agents have private incentives, unknown to the

central planner, and look to optimise for their own objective.
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Semi-Autonomous AP (SAAP) [1]

By assigning the controlled agents, the central planner can block

some tasks and in this way essentially determine the outcome to a

certain extent.

The central planner need not form a belief about utility functions

of the autonomous agents, nor does it assume the autonomous

agents to be expected utility maximisers.
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SAAP Formulation i

T - Tasks, C - Controlled Agents, F - Free Agents, V - Values

Top level optimisation:

minx
∑
i∈C

∑
j∈T

Vijxij +
∑
i∈F

∑
j∈T

Vijyij (10)

∑
j∈T

xij ≤ 1 for i ∈ C (11)

∑
i∈C

xij ≤ 1 for j ∈ T (12)

xij ∈ {0, 1} for all (i , j) ∈ (C × T ) (13)
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SAAP Formulation ii

Lower level optimisation:

y solves max
∑
i∈F

∑
j∈T

Uijyij (14)

∑
j∈T

yij ≤ 1 for i ∈ F (15)

∑
i∈F

xij +
∑
i∈C

xij ≤ 1 for j ∈ T (16)

xij ∈ {0, 1} for all (i , j) ∈ (C × T ) (17)

This is a Mixed Integer Linear Program. The paper focuses on

converting it in a disjoint bilinear program, by replacing the lower

LP with its dual so that they are both maximisation problems and

can then be reduced to a single stage optimisation.
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SAAP example 1

(a) Original SAAP (b) Different Utility Values



SAAP example 2

(a) Original SAAP (b) x10 Free Agent Cost



SAAP example 3

(a) Original SAAP (b) x0.1 Free Agent Cost



SAAP summary

• Model-based hierarchy - Can define constraints, variables and

objectives in a way that outlines their interactions.

• Solution method requires essentially converting to a single

layer optimisation (the SAAP paper converts the original

Bi-level into a single level problem)

• Its not tractable - can handle at most about 10 tasks and 10

agents - Free agents are more ‘costly’

• Global solution method: BLP → MPEC → GDP → MIP
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Routing Problems



Idea

Assignment Problems work well for assigning tasks to agents based

on a cost, but what if we want the cost to reflect the agent needed

to actually travel.

Can a similar bi-level approach be taken?

- Top level: Assignment - optimised for some metric;

- Bottom level: Routing - optimised to minimise distance/fuel

... maybe
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Multi-Agent Travelling Salesman (MATSP)

min
∑
i∈T

∑
j∈T

cij
∑
a∈A

xija (18)

s.t.
∑
i∈T

∑
a∈A

xija = 1, ∀j ∈ T (19)∑
i∈T

xipa −
∑
j∈T

xpja = 0, ∀a ∈ A, p ∈ T (20)

∑
j∈T

x1ja = 1, ∀a ∈ A (21)

ui − uj + n
∑
a∈A

xija ≤ n − 1, ∀i 6= j ∈ T (22)

xija ∈ {0, 1} ∀i , j , a (23)
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Bi-Level MATSP i

Top level is the Assignment Problem:

max
∑
a∈A

∑
i∈T

vijxai (24)

+
∑
a∈A

∑
j∈T

∑
i∈T

vijyaij (25)

s.t.
∑
i∈T

xai = 1 ∀a ∈ A (26)∑
a∈A

xai = 1 ∀i ∈ T (27)
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Bi-Level MATSP ii

Bottom level is the Travelling Salesman:

y solves min
∑
a∈A

∑
j∈T

∑
i∈T

Dijyaij (28)

s.t.
∑
i∈T

∑
a∈A

yaij = 1, ∀j ∈ T (29)∑
i∈T

xaip −
∑
j∈T

xapj = 0, ∀a ∈ A, p ∈ T (30)

∑
j∈T

xa1j = 1, ∀a ∈ A (31)

ui − uj + n
∑
a∈A

xaij ≤ n − 1, ∀i 6= j ∈ T (32)

xaij ∈ {0, 1} ∀a, i , j (33)

s.t. assignment x matches route y (34)
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Bi-Level MATSP iii

• Still trying to get this to work.

• Might be intractable, might just be poorly formulated.

• If a simpler problem like SAAP struggles at larger sizes a

much more complicated AP + TSP won’t be very scalable.
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Next Direction

If there is no ‘silver bullet’ for modelling and solving these types of

problems into a single optimisation, providing global optimality is

that a deal breaker?

• Can the AP and the TSP remain seperated?

• Either the AP and TSP are optimised for different metrics e.g.

risk, cost, distance.

• Or the AP and TSP are designed to better approximate the

MATSP in a hierarchical way.
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MATSP vs AP+TSP i

(a) MATSP (b) AP + TSP
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MATSP vs AP+TSP ii

(c) MATSP (d) MATSP Added Task
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MATSP vs AP+TSP iii

(e) AP + TSP (f) AP + TSP Added Task
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Allocation and Routing Summary

• AP problems are straight forward to solve (for 100s of agents

and tasks)

• Objective function needs to successfully quantify underlying

‘costs’.

• Routing problems are slightly more complex: TSP → VRP etc

• Multi-Agent TSPs (and VRPs) have an implicit Assignment

based on the routes

• Allocation, as a heuristic, has it’s benefits

• MATSP can be split into a Two-Stage AP and TSP - Can the

original allocation be improved after knowlege of the cost of

routing? Perhaps there is need for feedback.
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Multi Objective Evolutionary

Algorithms with Decomposition



MOEA/D i

minimize F (X ) = (f1(x), . . . , fn(x))

• In most practical Multi-objective optimization problems, the

objectives are mutually conflicting. [4]

• Aim to find Pareto-Optimal trade-off solutions and then an

approximate set to the Pareto Front

• Classical MO approaches produce a single PO solution per

run, MOEA can obtain several.
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MOEA/D ii

• Decomposition-Based MOEA: scalarizing functions convert

the MOP into single-objective optimization subproblems

solved using an EA and evolving a population of solutions.

• The objective function of each sub-problem is an aggregation

of all f:

Φ(x) =
m∑
i=1

λi fi (x)

Qi et al. outline a Multi-objective VRP with time windows [3]

using MOEA/D

EA ideas of how to handle crossover or two parents, and mutations

among populations
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MOEA/D iii

(a) Chromosome Structure

(b) Mutation Method (c) Crossover Method
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Questions?
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