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ABSTRACT
The Travelling Salesman and its variations are some of the most
well known NP hard optimisation problems. This paper looks to use
both centralised and decentralised implementations of Evolutionary
Algorithms (EA) to solve a dynamic variant of the Multi-Agent
Travelling Salesman Problem (MATSP). The problem is dynamic,
requiring an on-line solution, whereby tasks are completed during
simulation with new tasks added and completed ones removed. The
problem is allocating an active set of tasks to a set of agents whilst
simultaneously planning the route for each agent. The allocation
and routing are closely coupled parts of the same problemmaking it
difficult to decompose, instead this paper uses multiple populations
with well defined interactions to exploit the problem structure. This
work attempts to align the real world implementation demands
of a decentralised solution, where agents are far apart and have
communication limits, to that of the structure of the multi-demic
EA solution process, ultimately allowing decentralised parts of
the problem to be solved ‘on board’ agents and allow for robust
communication and exchange of tasks.

1 INTRODUCTION AND BACKGROUND
Many real-world problems such as reconnaissance and surveillance,
search and rescue and package delivery rely on decisionmaking and
coordination of multiple agents [1–3]. These can be roughly broken
down into navigating to a location, completing a task and moving
on to the next. The question of this paper is then, given a number
of tasks to be completed and a number of agents to complete them,
what is the best way to allocate tasks to agents and subsequently
navigate between those tasks.

The problem can be defined as both allocating a set of tasks to a
number of agents and simultaneously planning the route for each
agent [4, 5]. This is a slight variation on the classical Multi-Agent
Travelling Salesman Problem (MATSP). Given A salesmen (agents)
and N nodes (tasks) at different locations, a solution to the MATSP
seeks A trails such that each node (task) is visited only once and by
only one salesman (agent), whilst minimizing a given cost function.

In the MATSP the allocation and routing are a closely coupled
problem. Defining a route implicitly determines the allocation,
whereas the inverse is not necessarily true. If all the tasks were
allocated first, then calculating the remaining route for each agent
would be comparatively trivial (i.e. multiple single travelling sales-
man problems). It is in the moving of tasks between agents that
makes this problem dynamic and in turn more interesting. It is this
problem structure that this paper looks to exploit through the use of
Evolutionary Algorithms (EA), Multi-Demic (or Multi-Population)

EA and ultimately a decentralised Multi-Demic EA. The real driv-
ing question of this work is: can the real-world constraints of the
problem, such as limitations to communication, need for robust-
ness and spatial separation of agents, inform the structuring of the
optimisation technique in such a way that is mutually beneficial to
both the solver and execution?

EvolutionaryAlgorithms, also known as genetic algorithms or ge-
netic programming, are stochastic meta-heuristic search algorithms
which have shown to be effective at solving hard optimisation prob-
lems [6–10]. Inspired by biological evolution they employ the idea
of maintaining a population of individuals, which are candidate
solutions, along with mechanisms for reproducing, mutating and
selecting members of the population to produce new ‘generations’.
They have been used to solve a wide range of optimisation problems
due to their heuristic nature and flexible techniques.

Currently a large amount of research effort is focused on imple-
menting both parallel and distributed EA variations. Zhang et. al
[7] explore the state of the art of current distributed evolutionary
algorithms, comparing and contrasting a wide range of structuring
both the populations and the dimensions of problems. Importantly
they show that the distributed nature of the population allows a
Distributed Evolutionary Algorithm (DEA) to maintain a diverse
population, potentially avoiding local optima. The work of Alba
and Tomassini [6] looks at the range of parallelization techniques
used for EAs and some of the associated algorithmic issues. Sarma
[11] notes that an important operator in EA, selection, can be im-
plemented in a decentralised way whilst producing qualitatively
similar results to the centralised method.

Problems in which there are multiple objective functions to
consider, such as theMulti-Objective Vehicle Routing Problem, have
seen numerous implementations [7, 12–14] of EAs with multiple
demes (or populations) in a variety of sizes and structures. Often
they use decomposition to break down target problems into smaller
sub-problems which are optimized simultaneously and have been
shown to be extremely effective at obtaining good solutions.

A number of works look closer at the information exchange and
game-theoretical aspects of task allocation [4, 15–21]. For example
the work of Walsh and Wellman [16] uses a market based protocol
for allocating tasks to agents using a set of bidding policies and auc-
tion mechanisms. Alighanbari et. al [22] develop a robust approach
to task assignment for a group of UAVs, where they explore an
interesting phenomena that arises when tasks are reallocated too
rapidly known as ‘churning’. This is a type of instability where an
agent might start moving towards one task for it to be re-allocated
away, requiring them to turn back. Their work looks at ways of

ar
X

iv
:1

90
6.

05
61

6v
1 

 [
cs

.N
E

] 
 1

3 
Ju

n 
20

19



Thomas Kent and Arthur Richards

anticipating this and hedging against uncertainty to mitigate its
impact.

The outline of this paper is as follows, firstly the Multi-Agent
Travelling Salesman Problem (MATSP) and the variation of this
paper are formulated in Section 2. Next, in Section 3, the Evolu-
tionary Algorithm approach and its applications to the MATSP is
outlined. This is initially for an entirely centralised problem, with
a single population, then, in Section 4, an implementation of the
Multi-Demic Evolutionary Algorithm (MDEA) for solving MATSP
is implemented along with the method for decentralising it. Finally
in Section 5 simulation results for each algorithm for a range of
different problem sizes are presented and discussed.

2 MATSP PROBLEM STATEMENT
The Multi-Agent Travelling Salesman, also known as the multiple
Travelling Salesman Problem can be formulated in a number of
different ways. Here we present the three-index flow-based formu-
lation [5].

First define the indexes i and j to denote a task from the set T
of tasks 1 to N , the set A of agents from 1 to M and the matrix
ci ja to denote the cost of agent a travelling from task i to task j.
Additionally we define the three-index binary decision variable:

xi ja =

{
1 if agent a visits task j immediately after task i ,
0 otherwise

The formulation is then as follows:

min
xi ja

N∑
i=1

N∑
j=1

M∑
a=1

ci jaxi ja (1)

s.t.
N∑
i=1

M∑
a=1

xi ja = 1, ∀j (2)

N∑
i=1

xipa −
N∑
j=1

xpja = 0, a ∈ A,p ∈ T (3)

N∑
j=1

x1ja = 1, ∀a ∈ A (4)

ui − uj + N
M∑
a=1

xi ja ≤ N − 1, ∀i , j , 1 (5)

xi ja ∈ {0, 1} ∀i, j,a (6)

The objective, Equation (1), is to minimize the total cost of all the
agents travelling between the assigned tasks. The constraints of
Equation (2) ensure that each task is visited only once while the flow
conservation constraints of Equation (3) state that once an agent
visits a task then they must also depart from it. The constraints of
Equation (4) ensure that each agent is used only once and Equa-
tion (5) are the subtour elimination constraints [5] where u are
additional non-negative auxiliary decision variables, with ui corre-
sponding to the ith task, known as ‘node potentials’. Due to the NP
hard [23] nature of the MATSP a direct solution approach may be
impractical and likely ill suited for a decentralised implementation.
Therefore the approach of this paper is to use the heuristic solution
of Evolutionary Algorithms.
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Route B 6 5 7B
Route C 8 9C

Figure 1: Chromosome representation of route-ordered allo-
cation of tasks for three agents

A variation to the MATSP is used within this paper, notably the
relaxation on the need for agents to start or finish at a depot. This
is achieved by representing the agents location as dummy tasks,
essentially acting as their own personal depot. Along with this an
asymmetric extension is made to the cost matrix ci ja , whereby the
cost, caja , is calculated as normal to go from the agent’s location
(its dummy-task) to each of the other tasks, but the cost to complete
the tour, c jaa , (i.e. travel from a final task to the dummy agent-task)
has a zero cost. Importantly, in this paper the MATSP is applied to
a dynamic simulation of the problem, where the agents progress
towards their tasks, complete them and move on to other tasks with
new tasks being added over the course of the simulation.

3 EVOLUTIONARY ALGORITHM FOR MATSP
Evolutionary Algorithms are an increasingly popular heuristic solu-
tion method for producing good quality solutions to hard problems
in a reasonable time. In order to model the MATSP for use within
an EA, first a chromosome representation is developed based on
the work of Tan et. al [12] and depicted in Figure 1. More explicitly
let us define T to be the set of all N tasks ti for i ∈ {1..N } and A to
be the set of all agents a ∈ {1, ..,M}. Then let τk ⊆ T be an ordered
subset, for each agent k ∈ A, a chromosome X , and solution to the
MATSP is then defined as:

X := {τ1, ...,τA}
s.t τa ∩ τb = ∅, ∀ a , b ∈ A (7)

A population, P , is then a set of current chromosomes, Xl , defined
as

P := {Xl }, for all l ∈ {1, ..., µ},
where µ denotes the population size. Each chromosome in the
population also has a ‘fitness’ associated with it, which represents
the quality of the individual. As each chromosome describes the
routes of all agents then the fitness value is calculated by applying
the same path cost summation as Equation (1), and thus by finding
the individual with the greatest fitness value is equivalent to trying
to minimize the MATSP objective of Section 2.

An EA can be broken down into 3 main stages:
(1) Initialisation - creating an starting population for which

to evolve;
(2) Reproduction - carrying out evolutionary operators such as

crossover, mutation and improvement heuristics to produce
offspring;

(3) Selection - taking individuals from both the main popula-
tion and from the offspring to produce the new population;

The initialisation stage is used to create a initial population of fea-
sible solution candidates from which evolution will occur. For the
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(b) Move

Figure 2: Mutation strategies before and after
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Figure 3: Sequence-Based Crossover (SBX)
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Figure 4: Improvement heuristic based on the 2-opt algo-
rithm

purposes of this paper the initial population was created by assign-
ing each task to the agent which it is closest to with no attempt to
optimise the route. The reproduction stage is where parents from
the main population are used to evolve a number, λ, of new candi-
date solutions, or offspring, using three fundamental evolutionary
operators, crossover, mutation and improvement. These operators
are applied at random, but with fixed probabilities, for a pre-set
number of iterations to create a new batch of offspring. It is then in
the selection stage which looks to combine members of the original
population with the newly produced offspring to create a new pop-
ulation, that is, a new generation. The steps of reproduction and
selection are then repeated for a number of generations until some
stopping criteria is met, in the case of this paper it will be when all
tasks have been completed.

There is a large amount of research that focuses on creating
evolutionary operators which have favourable properties such as
computational efficiency and improved convergence whilst trying
to minimise negative properties such as premature convergence and
possible undesired speciation [24–26]. The following operators are
used specifically for solving aMATSP to utilise the knowledge of the
structure of problem to produce better quality candidate solutions
and therefore improve performance of the algorithm itself.

3.1 Mutations
The two Mutation operators known as the swap-mutation and the
move-mutation are based on those implemented by Qi et al. [14],
these act on a single parent solution and are outlined in Figure 2. The
swap-mutation takes one of the agents at random and two adjacent
tasks and swaps their order. Alternatively, the move-mutation takes
two agents and moves a random task from one agent route to
another.

3.2 Crossover
The two crossover operators, Sequence-Based Crossover (SBX) and
Route-Based Crossover (RBX) are based on the work of Potvin and
Bengio [27] and follow the routine of taking two parent solutions
switching parts of the routes and then repairing. The SBX crossover,
detailed in Figure 3 takes an agent from each parent, randomly
removes a link from each agents route creating a pre-break and
post-break route. The pre-break route of one agent is matched with
the post-break route of the other to form a new child solution. A
second child can be generated in this way by inverting agent from
which the pre and post-break routes are taken. Alternatively the
RBX crossover takes one agent from each parent and swaps their
corresponding route. After fixing any duplicates or unallocated
tasks this produces two offspring.

3.3 Improvement
In addition to the two traditional evolutionary operators, mutate
and crossover, this work includes an improvement heuristic opera-
tor that looks to improve the ordering of agents’ routes as shown in
Figure 4. This is done using the the 2-opt method first proposed by
Croes [28] which aims to find routes that cross over themselves and
reorder them so they do not. The fact that the underlying problem
is a shortest path one allows us to utilise proven methods such as
this for making easy improvements to the quality of solution and
hopefully improve convergence.

3.4 Selection
Selection is an important part of an Evolutionary Algorithm. It
determines not only which population members are used for re-
production but also which individuals of the population and new
offspring survive until the next generation. This paper uses a ran-
dom selection method for reproduction and a tournament selection
method for determining the new generation of individuals. The
tournament method involves running a number of ‘tournaments’ on
small batches of the population keeping the winner (the individual
with the best fitness). This method has been shown [6] to be effec-
tive as it manages to keep a balance of producing good offspring
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Figure 5: Population Structures and exchanges

whilst still allowing ‘weaker’ individuals to propagate in an attempt
to improve the search area and avoid premature convergence.

3.5 Update
The dynamic nature of simulating theMATSPmeans that as the sim-
ulation runs the state of the world changes and the problem needs
to be updated. So, in addition to the evolutionary operators, an up-
date stage is used to move the simulation forward by a time-step dt .
If the methods of this paper were instead applied to a static problem
(i.e. without simulating movement or task addition/removal) then
this step would simply be omitted.

It has a number of key tasks:

(1) Move the Agents - Move the agents towards the next task
in their current route (if any);

(2) Complete Tasks - Decide if a task has been successfully
completed and set it to complete;

(3) Add New Tasks - Add new tasks to the simulation;
(4) Update Distances - Update the distance matrix for use

when evaluating individuals’ fitness.

When aspects of communication, which are agent-location depen-
dent, and the addition of new tasks are included, the dynamics of
the problem become much more important. The solution to the
problem where all tasks are known a priori is likely to be very
different to one where that knowledge is revealed over time. For
the purposes of this paper, as an initial approach, when new tasks
are added they are assigned to the geographically closest agent and
added to the end of their route. Additionally a newly added task is
said to have been completed if the agent is within 1 metre of the
task at the time of the update step.

The simulation therefore begins with an initialisation, then for
every time-step the reproduction, then selection, then update stages
are run, with these repeating until all the tasks are completed.

4 MULTI-DEMIC EA APPROACH
Large bodies of research focus on managing both the population
structure and the individuals that comprise it to improve both the
runtime of the algorithm and the quality of solutions it produces.
They can typically be classified as either population-distributed, par-
titioning the individuals of the population, or dimension-distributed,
partitioning the problem dimensions. Of the population-distributed,
distributed or ‘island models’ and cellular EAs are two of the most
popular [7, 11, 12], relating to the size and spatial structuring of the
multiple populations. The relationship between the structure of the
algorithm and populations and the ability to parallelize them has
received lots of attention. EAs are fairly amenable to parallelism
due to the fact the majority of the operators, such as mutation and
selection, can be readily done in parallel. Importantly though, the
structuring of the populations leads to the greatest improvements
to the algorithm and numerical performance [6, 29].

This paper looks to use the island-model as the EA population-
distribution method, where the global population is divided into
a number of demes (distinct populations) and referred to as the
Multi-Demic Evolutionary Algorithm (MDEA). Communications
between these demes allow for individuals to migrate between
them at pre-defined intervals. These demes are structured to align
with real world execution of a MATSP where tasks are distributed
amongst multiple agents and are completed independently.

Using the notation of Section 3, each agent, k ∈ {1, ..,A}, holds
a set of demes,

Pk := {Pkl }, for all l ∈ {1, ..,A}, (8)

one deme for each agent l as depicted in Figure 5. Each deme is
defined by its parent agent, k , and its paired agent, l , it is assigned.
For each of these demes the evolutionary operators are restricted
to alter only parts of the solution which affect the allocation and
route of agent k or agent l (the deme’s agent pair). Moreover, the
demes are used in this way so as to create a situation where each
agent has a pairwise way of ‘reasoning’ about potential interactions
with the other agent. In this scope it is assumed that each agent
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has the authority and control over the tasks in which it is allocated,
the only way for a task to change allocations (i.e. move to another
agent) is for the agent who currently owns the task and the agent
the task is moving to, to agree to an exchange. Furthermore each
agent k has a ‘personal’ deme Pkk which is used to improve its own
route without any changes in allocation. In this way, any agent who
never interacts with another agent is still capable of optimising its
own route and carrying out its allocation.

4.1 Exchange
The MDEA follows a similar evolutionary procedure to the cen-
tralised single-population EA, i.e. initialisation, reproduction, se-
lection and update, except these are applied independently to each
deme. After a number of generations it is the role of the exchange
operator to synchronously migrate individuals between demes and
to generate the best current route for the agents to follow. In the
centralised EA with a single population the exchange stage’s only
role is to apply selection to choose the current best individual from
the population. This best individual determines the current alloca-
tion of tasks and also the route of each agent. In turn the update
stage uses this current route to move the agents towards their next
task. In the multi-demic scenarios the exchange carries out the
following:

(1) Determine feasible exchanges - Determine which agents
are allowed (and are able) to communicate and pass infor-
mation in preparation for the following steps;

(2) 1st Knowledge update - Propagate each agent’s current
allocation of tasks between agents allowable from step (1)
and fix/prune individuals which are invalid;

(3) Migrate Compatible Individuals - Migrate individuals
whose allocation is valid for that deme’s agent pair between
corresponding demes of the other agents i.e Pkl ↔ Plk ;

(4) Exchange Allocations - In a random order from the list of
feasible exchanges check the appropriate demes for the best
individual and determine if is worthwhile exchanging tasks.

(5) Update Current Best Agent Routes - Each agent,k’s, own
allocation and route is determined by selecting the best indi-
vidual from its personal deme Pkk ;

(6) 2nd Knowledge update - Propagate the new allocation of
tasks between agents allowable from step (1) and fix/prune
individuals which are invalid;

In the case where theMDEA is centralised, and there is no restric-
tion on communication of the feasible exchanges are all possible
agent pairings, there is no partial information in the knowledge
updates and the best solution can be taken as the best global in-
dividual from all demes. In the decentralised case, restrictions on
communications are implemented, meaning that agents are only
able to exchange when they are within a certain proximity of one
another. Here the propagation of knowledge becomes important,
agents who have been out of communication range might suddenly
find the current state of the problem vastly different from the in-
dividuals within its demes. Therefore the two knowledge update
steps are key in trying to either repair individuals or prune ones
which are completely incompatible.

Structuring the demes and exchanges in such a way as for them
to always exchange in a pairwise manner has a number of bene-
fits. Importantly it allows each agent to always be sure that the
allocation and route they are following does not conflict with any
one else, they are free to evolve their demes and ‘reason’ about
potential exchanges with other agents, but if they never come into
contact with another agent they are still able to continue on their
own. Indeed if no exchanges take place each agent still has its own
personal deme for improving on its current route without the help
of others.

An example exchange of the dMDEA is shown in Figure 6 be-
tween time step 2 and 3. Each agent’s communication range is
shown in red and the extra consideration range in green, what can
be seen here is an exchange, indicated by the dotted green line,
between agent A (light green) and agent C (orange) swapping the
tasks (17,32,0,16,29) and (11,22,24,33) respectively.

The aim of first distributing the populations and then decentral-
ising the communication is to replicate a likely implementation
scenario for a real world problem. In many multi-agent applications,
such as search and rescue, agents may have strict communication
constraints whilst being geographically spread across large areas.
It is likely that an agent may only have an intermittent ability to
communicate with a central location. Therefore by decentralising
the approach agents are able to have assurance in their current
route whilst the system is less sensitive to single-point failures.

A number of potentially important aspects for fully decentralised
implementations have not currently been explored in this work.
Notably aspects of belief and uncertainty in other agents are ne-
glected so it is assumed the locations of other agents are known
and that all information shared is entirely accurate.

5 RESULTS AND DISCUSSION
Using the outlined methods of Sections 3 and 4 we now look to
apply the single-population EA, the centralised MDEA (cMDEA)
and the decentralised MDEA (dMDEA) approaches to solve a set of
sample problems. Let us define a trial as applying a given algorithm
(EA, cMDEA or dMDEA) with a given set of parameters (such as
number of tasks or number of agents). Additionally a scenario is
defined as the initial conditions, such as starting location of the
agents and tasks as well as the order and location of addition tasks
to arise over the course of the simulation. Given the stochastic na-
ture of Evolutionary Algorithms it is important to try and compare
different simulations as fairly as possible. In order to do this each
trial is run against the same set of 50 distinct scenarios and then
the spreads of results are analysed. The area in which the prob-
lem takes place is a 200 by 200 metre square with agents’ initial
locations and all tasks being randomly spread with a minimum
separation of 1 metre. For each of these trials the initial number
of tasks are assigned at the start of the simulation and a further
50% (rounded down) are added one-by-one at set intervals as the
simulation progresses. The methods outlined in this paper have
been implemented in Python 3.5 and all the simulations are run on
a Dell Precision 3520 laptop running Ubuntu 16.04, with a 2.7Ghz
core i7 CPU and 16GB of RAM.

For each scenarios the aim is to minimize the total distance trav-
elled, that is, the objective of Equation (1) is minimised where Ci ja
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(a) Time step 2 (b) Time step 3

Figure 6: Snapshots of dMDEA solution, with 75metre communication (red) and additional consideration radius (green)

(a) 3 Agents 25 Tasks (b) 5 Agents 35 Tasks (c) 7 Agents 45 Tasks

Figure 7: Total distance travelled

(a) 3 Agents 25 Tasks (b) 5 Agents 35 Tasks (c) 7 Agents 45 Tasks

Figure 8: Deviation from straight line distance
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(a) dMDEA communication range vs total distance (b) dMDEA communication range vs run time

Figure 9: Changes in communication distances 5 Agents 35 Tasks

Table 1: Evolutionary parameters

EA cMDEA dMDEA

Population µ 50 20 20
Offspring λ per generation 25 10 10
Generations per time-step 5 5 5

reflects this distance cost. In addition all the agents experience this
cost function homogeneously at one unit of cost per unit distance.
An extensive assessment of the impact of parameters that lead to
changes in performance of the evolutionary operators themselves
has not be carried out for this work, instead sensible parameters
have been chosen that have performed well in testing. The parame-
ters chosen are detailed in Table 1, where it is worth noting that
for the multi-demic cases the parameter value is the same for each
of the demes. Additionally the fixed probabilities of performing a
crossover, mutation or improvement were 40%, 40% and 20% respec-
tively, and where those operators had multiple types these were
proportioned evenly.

Firstly, the trials have been run for pairs of 3, 5 or 7 agents and
25, 35 or 45 initial tasks respectively, with the additional 50% of
tasks added one-by-one every 5 time steps, with the results plotted
in Figures 7 and 8. For the dMDEA, each agent has a homogeneous
communication range of 75 metres, and importantly only evolves
the demes corresponding to agents 10 metres beyond that (called a
‘consideration radius’). Secondly, in order to assess the impact of
communication specifically on the dMDEA, trials have been run for
varying communications distances from 25 to 200 metres, shown
in Figure 9.

The objective function, that is, total distance travelled is the
main metric for measuring the performance of each algorithm and
is shown in Figure 7. It can be seen that the cMDEA overall has a
positive effect on the outcome of each simulation, with the average
total distance travelled being reduced or staying almost identical
to the single population EA. However, as noted in Table 2, this

Table 2: Average algorithm run-times (seconds)

A=3 N=25 A=5 N=35 A=7 N=45

EA 6.86 7.85 10.73
cMDEA 41.50 96.10 169.03
dMDEA 15.12 22.97 50.39

comes at the cost of a greatly increased linear run-time, which
also scales relatively poorly with problem size. This is due to the
structuring of multiple demes, for each of the A agents there is
a set of A demes, resulting in A2 total demes. This scaling effect
also impacts both the number of total population size (over all the
demes) and the number of offspring produced per iteration. For the
single population EA the scaling of the problem has no impact on
the size of the population nor on the number of offspring produced,
instead the burden of the problem size is placed on the complexity
of solving the MATSP and therefore instead impacts the solution
quality. This can be seen in the Figure 7c, with cMDEA producing
a number of better results, some as much as a 10% improvement.

Even with the restrictions on communication and requirement
of decentrality, the dMDEA only really has a significant reduction
in performance for the smallest problem size (3 agents and 25 tasks),
potentially due to a reduced chance in being within communication
range due to fewer agents. As the dMDEA has a communication
restriction of 75m and the consideration radius of 10m beyond that,
the agents only evolve the demes corresponding to relatively nearby
agents and as a consequence the run-times are greatly improved.
Additionally, due to the decentralised nature of the dMDEA it is
assumed that the calculations will be done on board each agent
and will therefore be done in parallel meaning the wall-time of the
systemwill scale with problem size significantly closer to O(A) than
the O(A2) of the cMDEA. Furthermore, only a small minority of the
computation time is attributed to the synchronous processes such
as exchange and therefore the dMDEA arguably has the potential
to be faster that the single population EA.
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One interesting dynamic factor, noted by [22] and coined ‘churn-
ing’, is a negative side-effect of frequently altering agents’ plan
whilst they are en route. To analyse this an measure called ‘straight
line distance’ is used. Here the final outcome of the trial is analysed
and the straight line distance is summed for each agent between
each of the tasks in the order in which they were completed. The
idea here is that this is the distance the agent would have taken
if this route and order was known ahead of time (note that this
is not necessarily the optimal ordering). The measure is then the
deviation of the realised path distance against what it could have
been and have been plotted in Figure 8 (Note that the simulations
are able to achieve a negative deviation from straight line distance
due to the fact a task is considered complete if the agent assigned
to it is within 1 metre). Encouragingly, neither the cMDEA nor
dMDEA appear to worsen this churning effect even over the three
problem sizes.

Aside from decentrality the main difference between the dMDEA
and the cMDEA is the restriction on communication distance. To
asses the impact of this constraint, for the problem size of 5 agents
and 35 tasks, the results of the 50 trials, for communications dis-
tances from 25 to 200 metres (and consideration distance of 10m
beyond that) are shown in Figure 9. As you would expect as the
communications restriction is gradually lifted the total distances of
the dMDEA results tends to the cMDEA. Notably, any communi-
cation radius of 125 or greater either matches or outperforms the
EA. What is also clear from Figure 9b is the relationship between
the consideration radius (communication radius plus 10), i.e. the
number of other agents to consider, and the run-time. Leading to a
possible trade-off decision between ability to communicate, or at
least which agents you should consider, and run-time.

6 CONCLUSION
Thiswork has aimed to solve a variation of the dynamicMulti-Agent
Travelling Salesman problem, whereby a number of tasks need to
be allocated to, and completed by, a number of agents. The focus
has been to align the structure of the real world constraints of a
problem, such as having geographically diverse agents with limited
communication, with the structure of the solution process. Three
versions of an Evolutionary Algorithm solution to the MATSP have
been proposed. A single population EA a centralised Multi-Demic
EA and ultimately a decentralised Multi-Demic EA

Typically adding constraints to a centralised problem results in
drops in performance, however the results of Section 5 show not
only that the cMDEA and dMDEA closely matches the results of
the centralised EA but in many cases improves the performance.
This improvement is offset by the increase in run-time of the Multi-
Demic approaches mostly due to scaling for additional agents. How-
ever it is shown that one upside of having a communication restric-
tion in the dMDEA is not needing to constantly consider all other
agents and consequently the run-time of the dMDEA is significantly
reduced. Moreover, as the dMDEA is decentralised by design, it can
be parallelised across each of the agents, actually resulting in faster
run-times. For the example of 5 agents and 35 tasks it is shown
that any communication radius of 125 or greater either matches or
outperforms the EA, thus there is a trade-off between run-time and
performance.

There are a number of further research questions that the au-
thors would like to explore. Firstly the impacts of different task
assignment schemes such as giving all new tasks to some leader
agent or only finding them when nearby, perhaps requiring an
additional search procedure. Additionally, implementing communi-
cation constraints on the single population EA would allow us to
more deeply explore the impact of communication on performance
of the MATSP. Moreover, it would be of interest to fix the allowed
computation time and study the direct impact on performance of
varying the other parameters such as population and offspring sizes
to fill the time as this might result in fairer comparison. Finally, as
robustness is a desirable property often attributed to decentralised
problems it would be helpful to be able to directly assess aspects
such as the ability for the dMDEA to handle communication drop
outs or the loss of an agents whilst still being able to complete all
tasks.

REFERENCES
[1] Mehdi Alighanbari. Task assignment algorithms for teams of UAVs in dynamic

environments. PhD thesis, Massachusetts Instittue of Technology, 2004.
[2] S. D. Ramchurn, Joel E. Fischer, Yuki Ikuno, Feng Wu, Jack Flann, and Antony

Waldock. A study of human-agent collaboration for multi-UAV task allocation
in dynamic environments. IJCAI International Joint Conference on Artificial
Intelligence, 2015-Janua(Ijcai):1184–1192, 2015.

[3] Frans C A Groen, Matthijs T. J. Spaan, Jelle R. Kok, and Gregor Pavlin. Real World
Multi-agent Systems: Information Sharing, Coordination and Planning. In Logic,
Language, and Computation, number 4363, pages 154–165. 2007.

[4] G. Ayorkor Korsah, Anthony Stentz, and M. Bernardine Dias. A comprehen-
sive taxonomy for multi-robot task allocation. International Journal of Robotics
Research, 32(12):1495–1512, 2013.

[5] Tolga Bektas. The multiple traveling salesman problem: An overview of formu-
lations and solution procedures. Omega, 34(3):209–219, 2006.

[6] Enrique Alba and Marco Tomassini. Parallelism and evolutionary algorithms.
IEEE Transactions on Evolutionary Computation, 6(5):443–462, 2002.

[7] Yue-Jiao Gong, Wei-Neng Chen, Zhi-Hui Zhan, Jun Zhang, Yun Li, Qingfu Zhang,
and Jing-jing Li. Distributed evolutionary algorithms and their models: A survey
of the state-of-the-art. Applied Soft Computing, 34(2013):286–300, sep 2015.

[8] Sushi J. Louis, Xiangying Yin, and Zhen Ya Yuan. Multiple vehicle routing with
time windows using genetic algorithms. Proceedings of the 1999 Congress on
Evolutionary Computation, CEC 1999, 3:1804–1808, 1999.

[9] Rui Borges Lopes, Carlos Ferreira, and Beatriz Sousa Santos. A simple and
effective evolutionary algorithm for the capacitated location-routing problem.
Computers and Operations Research, 70:155–162, 2016.

[10] Jean-Yves Potvin. Genetic algorithms for the traveling salesman problem. Annals
of Operations Research, 63(3):337–370, jun 1996.

[11] Jayshree A Sarma. An Analysis of Decentralized and Spatially Distributed Genetic
Algorithms. PhD thesis, George Mason University, 1998.

[12] K. C. Tan, Y. H. Chew, and L. H. Lee. A hybrid multiobjective evolutionary
algorithm for solving vehicle routing problemwith time windows. Computational
Optimization and Applications, 34(1):115–151, 2006.

[13] Anupam Trivedi, Dipti Srinivasan, Krishnendu Sanyal, and Abhiroop Ghosh. A
survey of multiobjective evolutionary algorithms based on decomposition. IEEE
Transactions on Evolutionary Computation, 21(3):440–462, 2017.

[14] Yutao Qi, Zhanting Hou, He Li, Jianbin Huang, and Xiaodong Li. A decomposition
based memetic algorithm for multi-objective vehicle routing problem with time
windows. Computers and Operations Research, 62:61–77, 2015.

[15] Min-Hyuk Kim. Distributed task allocation for multi-robot systems in military
domain. ProQuest Dissertations and Theses, 3481052:181, 2011.

[16] W.E.Walsh andM.P.Wellman. Amarket protocol for decentralized task allocation.
In Proceedings International Conference on Multi Agent Systems (Cat. No.98EX160),
pages 325–332. IEEE Comput. Soc, 1998.

[17] Luke Johnson, Sameera Ponda, Han-Lim Choi, and Jonathan How. Asynchronous
Decentralized Task Allocation for Dynamic Environments. In Infotech@Aerospace
2011, St. Louis, Missouri, 2011. American Institute of Aeronautics and Astronau-
tics Author’s.

[18] Archie C Chapman, Rosa Anna Micillo, Ramachandra Kota, and Nicholas R
Jennings. Decentralised Dynamic TaskAllocation: A Practical GameâĂŞTheoretic
Approach. In Proc. of 8th Int. Conf. on Autonomous Agents and Multiagent Systems
(AAMAS2009), number 8, page 8, 2009.

[19] Onn Shehory and Sarit Kraus. Task Allocation via Coalition Formation Among
Autonomous Agents. In Proc. of IJCAI, number 6288, pages 655–661, Montreal,



Decentralised Multi-Demic EA Approach to the MATSP

Canada, 1995.
[20] Rongxin Cui, Ji Guo, and Bo Gao. Game theory-based negotiation for multiple

robots task allocation. Robotica, 31(6):923–934, 2013.
[21] Han Lim Choi, Luc Brunet, and Jonathan P. How. Consensus-based decentralized

auctions for robust task allocation. IEEE Transactions on Robotics, 25(4):912–926,
2009.

[22] Mehdi Alighanbari and Jonathan P. How. A robust approach to the UAV task
assignment problem. International Journal of Robust and Nonlinear Control, 18(2
SPEC. ISS.):118–134, jan 2008.

[23] Hong Liu, Peng Zhang, Bin Hu, and Philip Moore. A novel approach to task
assignment in a cooperative multi-agent design system. Applied Intelligence,
43(1):162–175, 2015.

[24] Marco Laumanns, Lothar Thiele, Kalyanmoy Deb, and Eckart Zitzler. Com-
bining convergence and diversity in evolutionary multiobjective optimization.
Evolutionary Computation, 10(3):263–282, 2002.

[25] Volker Nannen and A. E. Eiben. Relevance estimation and value calibration of
evolutionary algorithm parameters. In IJCAI International Joint Conference on
Artificial Intelligence, pages 975–980, 2007.

[26] Jorge Gomes, Pedro Mariano, and Anders Lyhne Christensen. Cooperative
Coevolution of Partially Heterogeneous Multiagent Systems. In Proceedings of
the 14th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2015), number Aamas, pages 297–305, Istanbul, Turkey, 2015. auton.

[27] Jean-Yves Potvin and Samy Bengio. The Vehicle Routing Problem with Time
Windows -Part II: Genetic Search. INFORMS journal on Computing, 8(2):1–21,
1996.

[28] G. A. Croes. A Method for Solving Traveling-Salesman Problems. Operations
Research, 6(6):791–812, 1958.

[29] V. Scott Gordon and Darrell Whitley. Serial and Parallel Genetic Algorithms as
Function Optimizers. The 5th International Conference on Genetic Algorithms,
136(1):177–183, 1993.


	Abstract
	1 Introduction And Background
	2 MATSP Problem Statement
	3 Evolutionary Algorithm for MATSP
	3.1 Mutations
	3.2 Crossover
	3.3 Improvement
	3.4 Selection
	3.5 Update

	4 Multi-Demic EA Approach
	4.1 Exchange

	5 Results and Discussion
	6 Conclusion
	References

