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This paper explores an extension to a geometric approach of finding optimal routes for

commercial formation flight. An adaption of the Breguet range equation, alongside specific

aircraft characteristics, is used to represent realistic aircraft and underlying changes in

weight as fuel is burnt o↵. Weighting schemes, for both nominal and di↵erential rates

of fuel burn, are introduced and compared. Finally a method for finding wind-optimal

routes in a formation flight paradigm is developed in order to assess the e↵ectiveness of

a geometric estimate for the formation pair assignment problem. Using the geometric

method to allocate formation pairs is shown to o↵er good performance for solutions with

a significant reduction in computation time against all possible wind-optimal formation

routes.

I. Introduction

Commercial aviation is constantly looking for ways to cope with predicted increases to future demand1

whilst simultaneously trying to mitigate the resulting impact on the environment. This paper explores the
possibility of flying in formation, as an alternative to the way commercial flight operates today, in an attempt
to optimize current routes and decrease overall fuel burn.

One of the immediate benefits of formation flight, over other proposed fuel saving methods,2–4 is the
relatively minimal change to the current infrastructure. The majority of today’s commercial airliners can
fundamentally observe a reduction in drag from formation flight.5 Although the possibility of designing new
aircraft in the future to take advantage of the aerodynamic benefits of this scenario would be a long term
goal, in the short term it would not be a necessity.

Studies into areas of biomimicry such as geese flying in a ‘V’ formation6,7 have always interested scientists,
while the military have long flown in formation for communicative and defensive purposes. More recent
studies assessing the aerodynamic possibility of flying in close proximity in order to reduce drag8 coupled
with real time flight tests9,10 shows promise that flying in formation can reduce fuel burn and in turn improve
performance factors such as range and speed.

While some studies show a positive trade o↵ between deviating routes, in order to fly in formation and the
reduction in drag it produces,11–15 few have tackled the substantial fleet-assignment problem when routing
for formation flight. The massively combinatorial nature of this task means that in order to assess sizeable
problems a smart approach is needed. Both centralized and decentralized approaches are explored in Ref. 16,
wherein a small case study for the two-aircraft problem is covered. The incorporation of ‘proposal-marriage’
type algorithm explores the idea of joining formation in an ad-hoc fashion. Route optimization studied
in Ref. 5, along with a case study, shows significant cost saving potential, while using a more in-depth
optimizer, solutions obtained retain many of the restrictions imposed by today’s infrastructure.

Although there is a clear interest in harnessing formation flight to improve aircraft performance,5,11–16

little work has been done on the large scale allocation problem. That is, given a set of possible solo flights, how
to go about assigning them to particular formation ‘fleets’. The problem in question is highly combinatorial
and therefore as the number of flights or size of the fleets increase the possible ways of joining them together
grows dramatically. This paper proposes a time-free possible solution method through the use of a Fermat-
Toricelli approach which precedes the route assignment problem. Section II begins by first reviewing this
fast geometric approach to finding time-free optimal routes with few constraints (previously introduced by
the authors in Ref. 17). Then sections III and IV make an extension to this framework to include an
increasing level of detail arising from aircraft specific performance factors and di↵erential rates of fuel burn.

⇤PhD Student, Department of Aerospace Engineering, Bristol University, UK
†Aerospace Engineer, Department of Aerospace Engineering, Bristol University, UK

1 of 11

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 U

N
IV

E
R

SI
T

Y
 O

F 
B

R
IS

T
O

L
 o

n 
A

pr
il 

15
, 2

01
4 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

3-
48

89
 

 AIAA Guidance, Navigation, and Control (GNC) Conference 

 August 19-22, 2013, Boston, MA 

 AIAA 2013-4889 

 Copyright © 2013 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved. 

 Guidance, Navigation, and Control and Co-located Conferences 



An adaption of the well known Breguet range equation18 is used to gain approximations to how the rate at
which fuel burns changes during a flight. Finally section V presents a simple method for optimal routing
in the presence of wind, in order to assess the e↵ectiveness of the wind-free geometric solution as an initial
estimate for the global wind-optimal formation pairings.

II. Review of a Geometric Solution Method

The overtly combinatorial nature of the problem requires a clever approach in how it is modelled. In
order to realistically compute the rapidly increasing number of possible route combinations an equally rapid
method is required. The problem of formation routing can be abstracted to a simpler geometric approach
through the use of an extension of the classic weighted Fermat-Torricelli point problem.19 A full analytic
methodology for finding optimal rendezvous points, for aircraft to meet and fly in formation, to try to
minimize a given cost function was first developed by the authors in Ref. 17. The following reviews some of
the key points used to determine geometrically optimal routes.

The original ‘weight-free’ Fermat-Torricelli problem19 involves finding a single point P for a given triangle
ABC which minimizes the sum of the distances AP +BP +CP . There have been numerous solutions since
it was first proposed in the 17th century, some involving mechanics and di↵erentials while most rely on a
variety of mathematical properties based on the geometric dualities between triangles and circles.

In order to appropriately model the formation flight problem a scalar cost weighting is assigned to each arc
to represent each section of a formation flight. Given a triangle ABC with vertices A and B representing two
distinct departure airports and the third vertex C a common destination, the minimizing point P therefore
represents where the two aircraft, originally flying A to C and B to C, would rendezvous to fly in formation.
Under this scenario the arcs AP and BP would be the solo stage of flight, rendezvousing at P , the arc PC

would be the formation stage. In addition the solo arcs are assigned weights (in line with their relative cost for
flying solo) wA and wB , while the formation section’s weight, wf , is some proportion ↵ 2 (0, 1] (representing
the fuel saving by flying in formation) of the combined solo weights, that is, wf = ↵ (wA + wB). Therefore
for the triangle ABC we seek a weighted vectorial equilibrium about the point P so that

wA

�!
PA

||�!PA||
+ wB

��!
PB

||��!PB||
+ wf

��!
PC

||��!PC||
= 0. (1)

An application of the law of cosines to the three vectors in (1), results in expressions (as in equation (2))
for ✓A, ✓B and ✓f for the respective intersection angles 6

BPC, 6
APC and 6

APB, based only on the input
of the three scalar weight values wA, wB and wf .20

✓A = cos�1

 
�w2
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2
f + w

2
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2
B
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!
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�w2
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2
B + w

2
f

2wAwB

!
. (2)

Importantly this means given three scalar weights, representing the cost value along each section of the
flight, the angles at which these routes are required to meet in order to be optimal can now be calculated.
In doing so the departure and destination nodes are decoupled and therefore any two fixed points A and
B and the angle at which the trajectories meet, ✓f , defines a loci of possible formation points. In turn
two corresponding inscribed circles with A and B on their perimeter can be constructed. Each circle is
comprised of two arcs, the first contains, on its boundary, all the points P such that 6

APB = ✓f (i.e.
they meet at the angle required by equation (2)), the other, a single analytically determined point (called
a back vertex) ensures the remaining two angle conditions are met. A line connecting this back vertex to a
destination vertex intersects the loci of possible points once and is the desired P . Furthermore this method of
decoupling enables routes with both distinct departure and destination nodes to also be considered. Rather
than joining the back vertex to a single destination node it is instead joined to a second back vertex, the
one which corresponds to the loci of possible breakaway points at the destination (Figure 1). The authors’
previous work in Ref. 17 also describes an analogous method for creating formations larger than two (The
work of this paper only examines routing for formations of size two).

Lastly it is necessary to note here that the planar methodology outlined translates nicely to a spherical
surface (the earth). Straight lines become planes, which intersect the sphere along great circle paths, while
inscribed circles become inscribed spheres intersecting the sphere to form small circles.
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Figure 1. Join and Break Points for Two Distinct Routes

(a) Trajectory Between Back Vertices (b) Optimal Route

III. Realistic aircraft weightings

Eurocontrol’s Base of Aircraft Data21 (BADA) outlines detailed operational and performance factors. The
data contains aircraft performance models for a wide range of common aircraft types and is broken down
into three files. The Operations Performance File (OPF) contains all the thrust, drag and fuel coe�cients to
be used together with information on weights, speeds, maximum altitude, et cetera. The Airlines Procedure
File (APF) defines a default operational climb, cruise and descent speed schedule that is likely to be used
by an airline. The Performance Table File (PTF) presents the nominal performance of the aircraft model in
the form of a look-up table. Having access to this data allows a more accurate incorporation of aspects such
as speed, flight levels, climb, cruise and descent profiles into the model.

By only looking to create formations during cruise, the climb and descent section of the flight can be
considered ‘sunk costs’, as they are carried out irrespective of any formation. Assuming a constant nominal
fuel burn at a particular flight level then the objective is to minimize the total mass of fuel burnt over
the cruise section of the flights (fuel has an inherent cost associated with it). With this metric in place
the previously outlined weighting system can be altered to relate directly to how much fuel a particular
aircraft (nominally) burns per kilometre of distance flown at cruise. The BADA enables direct calculation of
these values for di↵ering aircraft, resulting in a more realistic weighting scheme. A proportional formation
weighting factor ↵ (taken to be 0.9 for formations of size two from table 1) is still used i.e. wf = ↵(wA+wB).
Table 1 demonstrates possible values of ↵ from estimates in Ref. 12–15 for varying fleet sizes.

Size of fleet (n) 1 2 3 4 5 6 7

Weight per fleet member (w↵,n) 1 0.9 0.85 0.82 0.8 0.785 0.775

Table 1. Estimated Proportional Formation Weighting Factor For Fleets of Size n

Further still, BADA determines realistic rates of climb and descent for any given aircraft, enabling realistic
constraints on radial distances aircraft must be away from airports before they can rendezvous with or break
away from other aircraft.17

IV. Di↵erential Fuel Burn Model

The above outlined framework allows aircraft-specific weightings based on a nominal mass of fuel burnt
per km of distance flown at cruise. This nominal amount, however, does not incorporate the fact that as an
aircraft flies it burns fuel, so decreases in weight, resulting in a lower rate of fuel burn at later stages of a
flight. For example, if one flight travels 1000 km before it meets another, which has flown only 300 km, then
a nominal ratio of weights may not accurately reflect this. Therefore the method needs to be able to move
from a notion of a constant nominal fuel burn to one which changes with respect to distanced flown.

Using a rearrangement of the Breguet range equation, outlined in Ref. 18, a model of an assumed weight
change profile for each aircraft can be developed. Let dW denote a change in weight of an aircraft due to
fuel consumption over an increment of time dt, then given a thrust specific fuel consumption factor, Ct, and
the thrust available TA, the following relation holds

dW = �CtTAdt, (3)
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which rearranged with respect to dt is

dt =
�dW
CtTA

. (4)

For the incremental distance dr travelled by the aircraft, over an increment of time dt, equation (4) is
multiplied by a stream-free velocity V1 so

dr = V1dt =
�V1dW

CtTA
. (5)

Rearranging equation (5) leads to the rate of fuel burnt per unit of distance

dW

dr

= �CtTA

V1
. (6)

Assuming steady level flight, then thrust available, TA, should equal thrust required, TR, and for a given
coe�cient of lift, CL, and drag, CD, then TA = TR = W

CL/CD
(which depends on W ). The W required to

evaluate this equation is determined after a certain flight distance, by following though with this derivation
enables its calculation. First integrate equation (5) between the limits s = 0 (when W = W0, the initial
weight) and s = R (when W = W1, the final weight),

R =

Z R

0
dr =

Z W1

W0

V1dW

CtTA
, (7)

R =

Z W0

W1

V1
Ct

CL

CD

dW

W

1/2
. (8)

Using the definition that for a given density ⇢1, V1 =
q

2W
⇢1SCL

results in

R =

Z W0

W1

r
2

⇢1S

C

1/2
L /CD

Ct

dW

W

1/2
. (9)

Assuming constant Ct, CL, CD and density ⇢1 (at a constant altitude) then

R =

r
2

⇢1S

C

1/2
L /CD

Ct

Z W0

W1

dW

W

1/2
, (10)

R =

r
2

⇢1S

C

1/2
L /CD

Ct

⇣
2W 1/2

0 � 2W 1/2
1

⌘
, (11)

completing the derivation of the Breguet range equation.18 Setting M =
q

2
⇢1S

C1/2
L /CD

Ct
to be the contribu-

tion of the constant terms then
R = M

⇣
2W 1/2

0 � 2W 1/2
1

⌘
, (12)

W1 =

✓
M

p
W0 �R

M

◆2

=

✓p
W0 �

R

M

◆2

. (13)

M is assumed to be a non-zero constant, so given a distance R and initial weight W0 an aircraft’s weight
can be calculated at that point. Equations (6) and (13) enable an estimation of fuel burn rates after any
distance (up to the range of the aircraft). Equation (13) requires knowledge of an initial weight in order
to estimate any en route weights, therefore it is necessary to also calculate the required fuel for the entire
journey. The total initial fuel is defined to be the fuel required to fly the entire journey plus enough reserve
fuel, this will be a large factor in the overall take o↵ weight. In general, formations must deviate from
their individual solo routes in order to meet up with other formation members, increasing the total distance
travelled (even if they burn less fuel in doing so). Therefore in order for an aircraft to fly a formation route
it must, at least as a conservative estimate, carry enough fuel so that it could, if necessary, fly it entirely solo
without any reduction in fuel burn from formation flight. In general this means that any aircraft planning
to join in formation must carry more fuel relative to the same aircraft flying solo and in turn it will burn
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fuel at a slightly increased rate. As there are currently no rules in place for commercial formation flight to
address this, an assumption is made that for either solo or formation flight each aircraft must carry enough
fuel to take o↵, land and fly 110% of the full cruise distance. In the absence of specific aircraft payloads this
paper assumes a nominal Zero Fuel Take O↵ Weight (ZFTOW), taken directly from BADA, to which the
weight of fuel required is then added to reach an estimate for W0. This assumption means that the initial
take o↵ weight is really just a function of cruise distance so can be incorporated into the weight equation.

Algorithm 1 An Outline of an Iterative Approach to Optimal Routes with Varying Fuel Weights

1: wA,N  w

⇤
A,N ; wB,N  w

⇤
B,N ; . Create initial weightings based on nominal fuel burn

2: wfN  ↵(wA,N + wB,N ) . For rendezvous and break point N 2 {1, 2}
3: WA,0  MTOW of Aircraft A . Set aircraft A weight with maximum fuel
4: WB,0  MTOW of Aircraft B . Set aircraft B weight with maximum fuel
5: while wi,N Not Converged do . While the di↵erence is too large
6: S  OptimalRoute(RouteA,RouteB,wA,N ,wB,N ,wf,N ) . Find optimal route
7: for Each Aircraft Fi 2 {FA, FB} do . i 2 {A,B}
8: for Each Point Pi,N do . For each rendezvous and break away point
9: dPi,N  distance(Pi,N ) . Calculate distance to reach each point

10: wi,N  dW
dr kPi,N . Update fuel burn rate at PN

11: end for
12: D(pa, pb, pc) distances(S, Fi) . Calculate distances for each section of flight

13: Wi,1  
✓p

Wi,0 �
P

D(pa,pb,pc)

M

◆2

. Calculate and update final weight

14: Wi,0  
✓p

Wi,1 +
P

D(pa,pb,pc)

M

◆2

. Calculate and update initial weight

15: Costi  Wi,0 �Wi,1 . Get cost for the flight
16: end for
17: end while
18: return S, CA and CB . Return the final solution and costs

As detailed in Algorithm 1 a nominal fuel burn rate is first used for an estimated initial solution, from
which W0 and the geometric weights are adjusted based on the distance needed to fly to reach the given
rendezvous point (and analogously between the break away point and the destination). Repeating this process
two or three times quickly converges to a solution which is optimal (to a su�cient degree of accuracy) for
varying fuel weights. This outlines a method for optimal routing for weights as a function of distance, a
comparison of the results of this, along with the nominal fuel burn rates, for a transatlantic case study are
presented in section VI.

V. The Impact of Wind

In the presence of wind aircraft will commonly deviate from a great circle path. Aircraft usually attempt
to fly the path of least time avoiding areas of large headwinds, opting for those with less resistance or even
tailwinds. Flying a large portion of a flight with a reasonable tailwind, such as a east bound transatlantic
flight, can reduce flight times by as much as a few hours compared to their west bound counterparts.22 Due
to this, North Atlantic Tracks (NATs) are published daily, both to alleviate tra�c and to account for this
portion of predictability in certain weather patterns. Our previously discussed geometric method does not,
however, take into account the almost certain likelihood of encountering wind. It is therefore beneficial to
see how well an optimal assignment, based on geometric formations, performs in the presence of predictable
wind. The method outlined is not intended to be a likely candidate for routing on a global scale, rather it
is designed to benchmark the fast geometric approach for the macro scale.

This paper does not attempt to model altitude changes, instead a flight level is fixed and a single ‘layer’ of
predicted wind is chosen. A randomly generated set of points are assigned vectors with a random magnitude
and direction, an interpolation is then applied between points to create a smooth wind field. In the absence
of an analytic solution for routing optimally, in the presence of wind, a numerical approach is used with a
similar notion of weighting (that is, during the formation section of the flight a fixed proportionality constant
to represent an assumed formation flight fuel saving is used). Then for each section of each flight a finite
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number of variable way-points are generated, filling in the gaps using a series of interpolated great circle
points. The route sections are constrained to share either the common rendezvous or break away point in
such a way as to simulate a formation routing. At each interpolated point the dot product of the direction of
the route with the direction of the wind is computed generating the contribution of the head or tailwind VW .
This is then incorporated into the cost function (which is a function of the distance d) using an identical
proportional discounting factor for the section of the flight flown in formation. The wind cost for each
incremental step dx is therefore, for a given aircraft cruise velocity V1, a summation of all incremental costs

dxW =
dx

(1 + (VW /V1))
. (14)

An ‘active-set’ optimization within Matlab’s ‘fmincon’ function, is used to determine the values of the
variable way-points for every possible pairing. This takes around 30 seconds to find a result per formation
pair. However, as this process is highly parallelizable (simply enumerating all combinations) means the
process can easily be split up and run on a cluster of computers. Although as discussed in section II, the
nature of the problem means that as the formation size (or number of routes to consider) grows the number
of possible combinations needing to be evaluated drastically increases. Therefore an unrefined and relatively
slow method of optimizing routes in the presence of wind would not be suitable for total enumeration for a
problem much larger than the case study discussed in section VI. It is, however, better suited to a ‘post-
process’ optimization, whereby a smaller subset of geometrically optimized pairs are re-optimized to include
the e↵ects of wind. The next section outlines the results of such a scenario.

VI. Comparison of Methods: A Transatlantic Case Study

Given an example set of data for 210 common transatlantic flights between 26 US and 42 European
airports. The aim is to create formations of size two in order to minimize the total cost (kg of fuel burnt)
of the entire fleet. Each flight is treated as non-greedy, doing what is best for the fleet as a whole rather
than individual gain. In this sense the fleet could be thought to represent a single airline company. The
approach taken for each of the methods previously outlined (sections II - V) is to first evaluate all possible
ways (21945) of making pairs of two from 210 flights using a fixed proportional discounting rate of 0.9 (from
Table 1) for the formation section of the flight. As each flight can only be in one formation (or fly solo)
Gurobi’s23 MILP (Mixed Integer Linear Program) solver is used to generate an optimal subset of pairs to be
the final solution. Solving in such a way is highly e↵ective for smaller problems as a MILP is NP-hard under
certain conditions, such as number of variables, number of constraints and the convexity of the problem.24

The non-convex nature of this problem, i.e. there are many possible local minimum, means that finding a
global minimum is already a di�cult task. Therefore by increasing the size of the problem (the number of
variables) the amount of resources needed to solve it will also increase.

An alternative approach for much larger problems (a route list larger than a few thousand) would be
to use a heuristic algorithm such as Simulated Annealing25 (whereby a stochastic rule picks a new solution
state and then probabilistically decides whether or not to keep it). The time taken to run this algorithm
changes linearly with the number of iterations, so it can be useful for finding a solution in a fixed amount of
time. As this method is a random process there is no guarantee that the solution will converge to the global
optimum. Therefore it is useful either to find a ‘good’ solution in finite time or at least give a lower bound
on a possible global percentage saving. The relatively small size of this particular case study, however, is
suited to a MILP. Each of the cases outlined below are the same size of problem (although the convexity
may change slightly) and therefore the runtime for the MILP is consistently around 2 seconds.

A. Geometric Solutions With Nominal or Di↵erential Weights

The geometric method in its simpler form is a very fast way of finding solutions, it is possible to enumerate
around half a million optimal routes in less than a minute. This makes it a likely candidate for larger
problems. To compute every combination of formations for this relatively small problem takes just over 2
seconds for nominal weighting (using the estimates outlined in BADA) and 4 seconds for di↵erential weighting
(using the iterative Breguet range equation). Aircraft specific weights (as section III explores), based on
predefined nominal fuel burn rates per km of cruise, result in a global saving of around 8.593%. However, as
outlined in section III the rate at which an aircraft burns fuel (in constant level flight) is dependent on the
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distance already travelled. Instead of a constant nominal fuel burn weighting, the weights now vary as each
aircraft traverses its flight path. This results in a fractionally reduced saving of around 8.522%, however this
is to be expected as the level of detail in the problem is increased and can be attributed in part to having
to carry a greater amount of weight to allow for reserve fuel. In a similar scenario but with identically
nominally-weighted aircraft the potential for fuel saving is based solely on the geography of the routes, that
is, the location of the departure and destination points, was found to be 8.643%.17 The introduction of
aircraft specific weightings means that it is not only the location of routes but also the aircraft that fly them
which impact potential savings. It is however, by removing assumptions from the problem statement which
allows for a tighter upper bound on the potential fuel savings attainable from realistic flight.

Calculation of Weight Total Enumeration Time Fuel burn Saving

Nominal 4.128s 8.593%

Di↵erential 6.422s 8.522%

Table 2. Fuel Saving Percentages Against Their Respective Solo Routes for Di↵erent Wind Fields

B. Geometric Solutions For Wind-Optimal Routes

For this case study a wind field is created to be representational of the jet stream over the Atlantic (see
Figure 2). The method used to enumerate each pairing is slow, meaning in order to get results in a reasonable
time the enumeration stage is split into a number of smaller subproblems run on a computer cluster (results
of this paper are based on using the University of Bristol’s High Performance Computer (HPC) BlueCrystal
Phase 226). The total wall time for this is around 150 hours, drastically more than a geometric wind-free
solution. However this method is more a proof of concept to benchmark the geometric results. Let GOPW
stand for the Geometrically Optimal solution Pairings which are then optimized for Wind, WOP stand for
the Wind Optimal solution Pairings and WOS for Wind Optimal Solo routes.

Figure 2. Eastbound Wind-Optimal Formation Pairings (WOP)

Figure 3. Eastbound Geometric Estimate to Wind-Optimal Formation Pairings (GOPW)
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The WOPs result in potential savings, against WOS routes, of 9.316%. A proportion of this saving comes
from cruising with a tailwind (as visible in Figure 2) so makes any possible saving dependent on the particular
wind field used. The ‘wind-distance’ travelled (i.e. the equivalanet km cost to fly the same distance without
wind) is 1.016% less than the solo routes while the actual distance flown is about 0.511% less for formations.
The solo routes appear to need more freedom to find a better path through wind as their deviations are not
met by formation fuel savings. This can be somewhat attributed to the nature of the wind field, whereby
the majority of the tailwinds are in the mid north-atlantic, so formations are already likely to fly close to
these benificial regions.

A promising result arises when taking the solution pairings from the geometrically optimal solution (which
ignores potential wind) and then optimally route them through the same wind field (GOPW as in Figure 3).
The total cost is around 9.094% less than their WOS counterparts, which is under half a percentile worse
than the solution for WOP. This implies is that it may not be necessary to evaluate every wind-optimal route
combination, but rather leave it as a post-process. That is, (1) Use the fast geometric method to enumerate
all possible pairings (ignoring wind), (2) Run a MILP (or similar) to create a subset of optimal formation
pairs and finally (3) Optimize the subset for a predicted wind field. Moreover one can see immediately from
Figure 3 that three of the geometric pairings may not be best suited to this particular wind field (the ones
which travel over Greenland). It may therefore be beneficial to consider taking the six underlyingsolo routes
and look at possible neighbouring solution pairs for further improvement.

Examining the results for the same set of flights for the same wind field but travelling west bound. The
resulting pairings for the WOP saves around 9.325% against 8.181% for the GOPW. The di↵erence is a
little higher, around the 1% mark, adding to the idea that the geometric solution pairs may be a reasonable
estimate for the global wind solution. Figures 4 and 5 show how the routes clearly avoid the green areas
(headwinds when travelling westerly) and take a route either above or below. The formation routes taken
are decreased by 0.817% and 0.156% for wind-distance and absolute-distance respectively compared to the
solo routes.

Figure 4. Westbound Wind-Optimal Formation Pairings (WOP)

Figure 5. Westbound Geometric Estimates to Wind-Optimal Formation Pairings (GOPW)

Finally consider a much more volatile wind field where there are a greater number of distinct areas of
di↵ering winds with a larger di↵erence in peak values. The results show a 9.343% saving for WOP and a
8.224% saving for the GOPW estimates against WOS. With respective decrease of 2.292% and 1.231% to
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wind-distance and absolute-distance. It is clear from Figures 6 and 7 that the routes passing through the
more volatile wind field returns a less smooth path, jumping between areas of less resistance.

Figure 6. Wind-Optimal Formation Pairings (WOP) Through a Volatile Wind Field

Figure 7. Geometric Estimated Formation Pairings (GOPW) Through a Volatile Wind Field

WOP GOPW

Wind Field Runtime Saving (%) Runtime Saving (%) Percentile di↵erence

Jet stream (East) 150 hrs 9.316 43m 9.094 0.223

Jet stream (West) 150 hrs 9.325 43m 8.181 1.144

Volatile 150 hrs 9.343 43m 8.224 1.119

Table 3. Comparison of Fuel Saving Percentages Against Respective Solo Routes of WOP and GOPW

Now the actual percentage savings are more heavily influenced by the particular winds encountered. The
amount of deviation, between savings for wind-optimal and geometrically-optimal formation assignment are
more important. Although it may not attain a global optimum for a more realistic model, it allows the use
of the fast geometric approximation to estimate solutions to much larger problems in realistic time-frames
(some 200 times faster). Once a smaller solution set is determined it can be post-processed to further improve
the route to account for predictable wind patterns.

VII. Conclusion

This paper has explored two distinct methods for finding optimal routes for formation flight. Firstly
an extension to the Fermat-Torricelli problem allows the decoupling of a complex problem, providing a
fast and e↵ective framework to find optimal formations for a list of routes. Using a set of general aircraft
performance coe�cients allows a more accurate representation of routes containing distinct aircraft to be
incorporated into the solution. The introduction of either a nominal or di↵erential aircraft weighting scheme
allows formation fleets to be more accurately assigned and routed to account for di↵ering aircraft e�ciencies.
The simple iteratively-updating scheme also allows room for possible expansion in future, such as a more
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accurate calculation of the specific proportionality discount factor between particular aircraft pairings.
Secondly the modelling of wind fields to represent how aircraft might route in the presence of significant

weather, while increasing the amount of detail in the problem to create tighter bounds on the possible
optimum. The geometric method provides an ‘ideal-world’ solution, whereby all flight paths are great circle
and do not encounter any kind of weather. The results in section V and Table 3 show that the geometric
method acts as a reasonable estimate for the formation fleet assignment problem in the presence of wind.
Moreover as the GOPW solutions only provide an initial estimate, it would be of interest to explore possible
methods to improve upon it, such as a heuristic algorithm which prioritizes minimizing the number of times
a wind optimal route is calculated.

The unrefined nature of the algorithm used to compute optimal wind paths means that it is not a likely
candidate for assessing much larger problems. It would therefore also be beneficial to look at either refining
it or using other methods, such as particle swarm optimization, to improve runtime, hopefully enabling the
assessment of much larger problems (and in a greater depth, including routing through wind for formation
fleets of more than two aircraft). Lastly while this paper does not attempt to assess the impact of a dynamic
model it would be of interest to see how aspects of timing and uncertainty a↵ect possible routings, in
particular how to route for both predictable and unpredictable dynamic wind fields, however it is left for
future work.
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