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Chapter 1

Introduction

With passenger numbers expected to reach 7.3 Billion by 2034 [84] commercial avia-
tion is constantly looking for ways to cope with increases in demand [3,31,44] whilst
simultaneously trying to mitigate the resulting impact on the environment [8]. Even
with the economic recession of 2008-2009 heavily impacting the airline industry, more
recent growth reports [84] indicate growth in passenger demand for air transport re-
turning to the more historic levels of between 5-6% per year. Therefore the focus
of much of modern aviation-related research aims to make air travel cheaper, more-
efficient and significantly more environmentally friendly.

Fuel prices still remain a significant cost factor for the airline industry; in 2014,
with prices averaging $130 a barrel, jet fuel accounted for around 31% of airline
costs. Therefore until alternatives to fossil fuels, such as electric or biofuels [54], are
feasible, then increases to aircraft efficiency are vital. Even though between 2000-13
the average fuel per passenger trip (and therefore also kg of CO2), has decreased by
31% [43], annually, air transport still represents 2% of all man-made CO2 emissions
[84]. The Air Transport Action Group (ATAG) has set a number of key targets,
to improve fleet fuel efficiencies by 1.5% per year until 2020, followed by stabalising
net emissions from 2020 with carbon-neutral growth in an attempt to reduce net
emissions from aviation by 50% by 2050, compared to the levels of 2005 [5].

Allowing growth in demand whilst continuing to reduce emissions will likely re-
quire a combination of operational, economic and technological mitigating strate-
gies [38]. While new technologies offer great potential, the ability for them to quickly
become part of the global aircraft fleet [37], would largely rely on the introduction
of new aircraft. Therefore it is clear that in order to achieve such environmental
goals, without radical changes to current aircraft fleets, breakthroughs of operational-
concepts are required. The work of this Thesis looks at one potential concept for
commercial aviation: formation flight.

While formation flight has long been used within the military, for providing an
effective approach for safely moving large numbers of aircraft [53], in addition to
communicative and defensive purposes, the act of flying in close-proximity to ob-
tain drag-reduction is an added benefit. Therefore it is of great interest to see how
formation flight can be utilised to reduce fuel-burn for commercial aviation.

One of the immediate benefits of formation flight, over other proposed fuel saving
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methods such as air-to-air refuelling or blended wing body aircraft [73, 74, 87], is
the relatively minimal change to the current infrastructure. The majority of today’s
commercial airliners can fundamentally observe a reduction in drag from formation
flight [21].

Although the possibility of designing new aircraft in the future to take advantage
of the aerodynamic benefits of this scenario would be a long term goal, in the short
term it would not be a necessity.

1.1 Formation Flight

Scientist have long looked to nature for inspiration; the field of biomimicry is devoted
to developing techniques to emulate nature’s strategies. One motivating example
is how geese, and other migratory birds, fly in a ‘V’ formation [30, 49, 52, 85, 103]
when travelling long distances. Key research shows that birds participating in such
formations will have significant increases to their range [30,63] while exhibiting lower
heart rates [103] during flight compared to flying alone.

(a) Top-Down View

(b) Rear view

Figure 1.1: Wing-tip vortices and regions of upwash and downwash

The aerodynamic fundamentals behind formation flight for aircraft are fairly well
studied [18, 64, 76, 79, 81]. As an aircraft flies, the pressure differentials created over
the wings’ surface, generates lift. The wake left behind the lifting-wing induces down-
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wash inboard, between the aircraft wingtips, and a corresponding upwash outboard
as depicted in Figure 1.1. A trailing aircraft flying through this region of upwash
can maintain its flight while operating at a lower angle of attack. Therefore the air-
craft observes a significant reduction in induced drag and as a result a corresponding
reduction in fuel burn.

While estimates regarding the level of drag reduction are mixed, they all remain
extremely promising [18,19,56,76,77,81,88,99,100]. Some flight tests have recorded
levels of induced-drag being reduced by as much as 40-60% for the trail aircraft in a
formation of two, equating to roughly a 20-30% reduction in total drag. Alongside
this, tests have also directly measured fuel-flow reductions, for an aircraft flying in the
upwash of another aircraft, at levels of anywhere between 4-18%. Most importantly
for commercial formation flight, Ning et al. [77] have shown that even flying as much
as 10-40 wingspans behind the leading aircraft can still result in a 30% induced-drag
reduction.

1.1.1 Key Areas of Formation Flight

The possibility of flying in formation to reduce fuel burn as an alternative to the way
commercial flight operates today is an exciting prospect. However, implementation
of formation flight is a huge challenge, spanning multiple disciplines and requiring a
significant amount of research and investment. Before formation flight can become a
realistic fuel-saving method for commercial aviation a number of key areas must first
addressed:

• Aerodynamics and Simulation - Through experimentation, flight tests and mod-
elling a number of core aerodynamic aspects need to be covered. Observing,
sensing and tracking wake-vortices is vital. Furthermore modelling and predic-
tion of the aerodynamic interaction between two (or more) aircraft will assist
other areas of research.

• Control and Automation - This includes modelling of the aircraft dynamics
within a formation, creating suitable control laws to assist aircraft utilise drag-
reduction. A key problem will be maintaining optimal aircraft positioning
within an aircraft’s wake and automating the process to increase efficiency and
minimise pilot fatigue.

• Routing and assignment - To take advantage of the fuel reduction flight benefits,
aircraft routes need to be altered, calculating rendezvous locations between
flights looking to join formation to minimise cost. The large scale problem of
assigning aircraft into formations also needs addressing.

• Operations and regulations - A number of aviation regulations and standards
will need to be adjusted in order to meet the need for the relatively closer
proximity required for formation flight. Changes to the operational side of
commercial flight such as air traffic management and scheduling also need in-
vestigating.

3



1.1.2 Thesis Objective

With a number of studies assessing both the aerodynamic possibility [35, 76, 77] and
the associated control problem [16, 22, 25, 80] of flying in close proximity in order to
reduce drag, coupled with flight tests [75,88,99] shows promise that flying in formation
can be utilised to reduce fuel-burn. While each of the key areas holds an equal
importance, and with all being ongoing research within the scientific community, the
work of this Thesis chooses to focus on the Routing and Assignment aspects. While
some studies show a positive trade off between deviating routes, in order to fly in
formation and the reduction in drag it produces [18, 19, 21, 60, 63, 89, 106], few have
tackled the substantial fleet-assignment problem when routing for formation flight.

The routing side of the problem asks the question of how to route commercial
aircraft to take advantage of formation flight. That is, assuming a reduction in
observed ‘cost’ by flying as a formation and given a set of solo routes, how do we
go about creating formations and then routing them to minimise a total cost. The
interconnected assignment problem is then, given a set of possible solo flights, how
to go about assigning them to particular formation ‘fleets’. The problem in question
is highly combinatorial and therefore as the number of flights or size of the fleets
increase the possible ways of joining them together grows dramatically. The massively
combinatorial nature of this task means that in order to assess sizeable problems a
smart approach is needed. Therefore the core objective is broken down into two main
questions:

Objective:
Optimise current routes to fly in formation to minimise total fuel burn.

Question 1:
Where should aircraft meet in order to fly in formation?

Question 2:
Which of these formations should be used to minimise cost?

Finding a globally optimal solution to the above objective is not an easy task.
Given the problems combinatorial nature we therefore approach the problem of large
scale formation routing initially in a simplified manner where by using a fast geometric
approach to gain analytic solutions allows the assignment problem tractability.

The next section outlines and summarises some of the work already carried out
in areas relating to formation flight and optimal routing.

1.2 Review of Current Literature

The interest in utilising the formation-induced drag-reduction benefits has grown in
popularity over the last ten years. This interest has been motivated by a number of
different but interconnected research areas. The breadth of the necessary research to
make commercial formation flight viable, means it is beyond the scope to this Thesis
to assess all these areas. Instead, the work of this Thesis is focused on assessing
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the global routing and assignment problem. The following section outlines some of
the key pieces of literature relating to formation flight in the three main areas of
Aerodynamics, Guidance and Control and, Routing and Assignment.

1.2.1 Aerodynamics of Formation Flight

Although the aerodynamic aspects of formation flight are not covered by this Thesis,
underlying influential factors contribute to the practicality and effectiveness of flying
in formation. Results from a number of studies into the aerodynamic benefits of
close and extended formation flight have been both inspirational to researchers and
essential in developing an understanding of the potential drag-reductions achievable.

The aircraft considered within this Thesis are from a set of pre-defined operational
models outlined by the Base of Aircraft DAtabase (BADA) [42]. The BADA data
set contains details of key operational and performance factors. The data outlines
aircraft performance models for a wide range of the more common aircraft types and
is broken down into three files. The Operations Aircraft Performance file contains all
the thrust, drag and fuel coefficients to be used together with information on weights,
speeds, maximum altitude, etc. The Airlines Procedure file defines values such as the
default operational climb, cruise and descent speed schedule that is likely to be used
by an airline. The Performance File presents the nominal performance of the aircraft
model in the form of a look-up table. Having access to this data allows us to not
only more accurately incorporate aspects such as speed, flight levels, climb, cruise
and descent schedules but to also remain consistent between different aircraft.

The aerodynamic research concerning formation is broad, but a few key themes
can be observed. Although formation flight has historically been a military endeavor,
with concern being placed on avoiding the negative effects of wake vortices [91], more
recent use of wake vortices for drag-reduction has grown in popularity. The 1998
work of Blake and Multhopp [19] highlights the interconnected aerodynamic and
control problem. They showed that by flying in close-proximity a large reduction in
induced drag could be realised by the trail aircraft; with simulations showing potential
range increases of 60% for formations of five aircraft. Notably they emphasised the
importance of the lateral-positioning of aircraft, with 50% of drag saving being lost
if aircraft were unable to maintain it to within at least one tenth of a wingspan.

Blake and Gringas [18] conducted wind-tunnel tests, and outlined the difference
between predicted drag reductions [19] of 40% and those realised at around 25%.
These tests also reaffirmed the predicted importance of lateral positioning. Increases
in drag occurred if the wing tips overlap by more than half a span, but saving was
achieved at overlaps of about 15-20% compared to the 10% predicted.

Analytic modelling and simulation of drag reduction on T-38 aircraft outlined by
Wagner et al. [56] showed 60% induced drag reductions at a longitudinal spacing of
0.9 of a wingspan from the leader, with a third aircraft realising a saving of 67%.
While the work commended the fact that these saving can fundamentally be realised
without any structural changes to the aircraft, attention was drawn to the need for
a controller system to relieve the pilots’ workload and stay in the optimal position.
This work was preliminary to an actual flight test presented by Wagner et al. [100],
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which showed that the positional predictions for fuel saving were successful, yielding
fuel savings between 4-13%. However the results for a three aircraft formations were
inconclusive, citing the difficulty of flying in a stable position without additional
sensing and control abilities.

A number of flight tests haven been performed at the NASA Dryden Flight Re-
search Centre to explore the fuel saving benefit of flying in a tight formation. Vachon
et al. [88, 99] used two modified F/A-18 aircraft to control and monitor relative po-
sition and measure the effects on the performance of the trail aircraft. Total drag
reductions of over 20% were calculated and average reductions in fuel flow of 18% were
measured. This work also discussed the importance of a need for a control system
to maintain position and throttle settings. More recent tests on drag reduction by
Pahle et al. [81] on the much larger Boeing C-17 aircraft still show promising savings
with fuel flow reductions of 7-8%.

The potential shown by preliminary estimates, backed up by real-world flight tests,
is encouraging. Alongside these flights test a number of analytical studies have been
carried out to try to model and predict a number of the major aerodynamic processes
at play. The importance of control and automation for positioning and throttle setting
was a conclusively demonstrated. The process of designing and implementing the
necessary sensing capabilities and control laws will be founded on the ability to model
the aerodynamics.

It is essential to be able to predict and track both the evolution of the wake-
vortices left by aircraft [35] and the aircraft itself [77], whilst maintaining a position
relative to them [15,66,79,96]. Furthermore at a design level there is potential [19,64]
for future aircraft to be altered to amplify these drag-saving effects.

One of the main factors of making commercial formation flight a reality is the abil-
ity to use the same principle observed in the flight tests of ‘close-formation flight’ and
apply them for ‘extended formation flight’. The work of Ning, Flanzer and Kroo [77]
shows that induced drag reductions upwards of 30% are possible even at longitudinal
separations of 10-40 wing spans. Ning’s Doctoral Thesis [76] provides one of the best
in depth studies of the potential for formation flight within a commercial environment
from an aerodynamic perspective. It covers the modelling of wake vortices for the
purposes of extended formation flight with incorporation of the compressibility effects
allowing for high-fidelity solutions. Finally formation topologies are also studied to
examine the effect of different positioning within a formation fleet. However, one
motivating conclusion from this work is the diminishing rate of formation benefit as
the formation grows in size and how it is coupled to an increasing control complexity.
Therefore, for practicality and aerodynamic reasons it may not be feasible to operate
large formation fleets within extended formation flight, indicating formations of two
or three to be of greatest interest.

1.2.2 Guidance and Control

Many of the concluding remarks of the flight tests emphasised the importance of
automation and control within formation flight. Not only to mitigate increases on
pilot fatigue but also to realise more of the potential savings. Accordingly, there has
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been significant research undertaken over the past two decades to try an answer some
of fundamental questions affecting guidance and control within formation flight.

Through the use of decentralized controllers for a formation of five unmanned
vehicles Wolfe, Chichka and Speyer [104] explored the idea of having aircraft follow
the aircraft in front, analysing of the controller’s sensitivity to disturbances in initial
conditions. Further work by Chichka, Speyer and Park [26] showed the controller’s
ability to allow aircraft to quickly return to an optimal position to minimise drag.
Similarly the use of distributed control for a formation fleet, studied by Zou et al. [108],
allows for the easy addition or removal of aircraft along with an inherent scalability
for changing formations sizes. Furthermore the controller includes the ability to
adaptively account for an uncertain drag parameter coefficient, meaning changes to
wake interaction can be accounted for.

Formation-hold autopilots have been introduced to enable formations to stay in
position relative to each other [16, 22, 70, 80, 102]. Pachter, D’Azzo and Proud [80]
outlined the use of a controller for the trail aircraft to maintain formation when faced
with lead aircraft maneuvers. Furthermore results show that the inclusion of the
aerodynamic coupling effects, present during close formation flight, may be unneces-
sary. Binetti et al. [16] adapts a formation-hold autopilot to incorporate an adaptive
loop feedback system with the objective of maximum-efficiency flight while travelling
through uncertain wake-induced velocity fields. The use of two extremum-seeking
feedback loops controls both the optimal lateral and vertical separation between the
aircraft.

DeVries and Paley [35] further explore the need be able to simultaneously track
the wake of lead aircraft and control the follower aircraft’s position; application to
both air-to-air refuelling and formation flight are investigated. Optimal control is
used to guide follower aircraft to desirable positions relative to the lead with a focus
on encouraging the observability of the parameter states associated with the wake.
Furthermore extremum-seeking feedback is used by Brodecki and Subbarao [22] to
automatically steer trailing aircraft towards the ‘sweet spot’. Showing that aerody-
namic calculation of the optimal positioning of the aircraft may not be a prerequisite
but instead ‘sensed’ during flight.

1.2.3 Routing and Assignment

Although each of the core research areas discussed will contribute to the overall success
of commercial formation flight the work of this Thesis is based within the Routing
and Assignment category. In order to focus on this particular aspect of the formation
flight problem, a number of assumptions have been made. While the flight tests and
aerodynamics are a motivation, the process of modelling, predicting and measuring
the benefits and practicalities are not explored. Instead these topics are assumed to
be sufficiently solvable to allow for formation flight to occur. Aside from the modelling
aspects of using the BADA data, estimates of the potential drag-reduction are seen
to most directly impact the work of this Thesis.

Similar assumptions need to be made for the guidance and control side of formation
flight. Utilisation of the drag-reduction will depend heavily on the ability to design

7



and implement effective control-laws to automate the formation flight process. Again,
the work of this Thesis assumes that this is a feasible task.

Finally even with all the optimisation, mathematical and engineering problems
solved, operations and regulations remain an obstacle. The underlying presumption
is that, with enough realistic potential, for significant reductions in fuel, emissions
and costs coupled with sufficient safety and control measures, that this side of the
problem will become solvable.

Seminal work on the coupled formation routing and assignment problem was in-
troduced by Ribichini and Frozzoli [89]. They assess the coordination of multiple
independent aircraft, with distinct individual routes, to minimise some overall cost.
Formation flight between the aircraft is non-mandatory, rather it is a result of the
minimum-cost optimization problem. Optimal routes are comprised of great circle
paths, ignoring wind, and assume per-unit distance fuel reductions of 10% and 15%
when flying in a formation of two and three respectively. An example three flight
study resulted in overall savings of was 9.2% against solo flight. The work also im-
plements a ‘proposal-marriage’ type greedy-algorithm for decentralised assignment of
flights into formations, outlining their concerns with tractability of the larger globally
optimal problem. The centralised approach discussed has been motivational within
this area of study and notably to the approach of this Thesis.

The work of Bower, Flanzer and Kroo [21] improved upon the basic routing meth-
ods with a focus on aerodynamic performance and formation geometries. In addition
to the aerodynamic approach the authors outline a very interesting case study for five
FedEx flights, creating one formation of two and one of three equating to fuel savings
of 7.8% and 12.5%. Notably, the formation induced drag reductions were simulated
for each individual aircraft type and differing formation geometries. The in depth
aerodynamic simulation within this study provides an excellent candidate for pro-
ducing ‘higher-fidelity’ solutions for the formation flight problem. Furthermore the
results of the case show potential for even greater savings than the ‘simpler’ approach
of Ribichini and Frozzoli.

Succeeding work by Xu, Ning, Bower and Kroo [105,106] combines route optimiza-
tion, an aerodynamic model by Ning [77] (previously discussed) and an assignment
optimization. The approach taken is to take all possible combinations of missions and
heuristically discard ‘bad’ formations, the remaining candidate solutions are then op-
timised for formation flight. For each route, a gradient-based optimisation is used
to calculate values for a number of design variables, such as rendezvous locations
and altitudes and provides reasonably high-fidelity solutions which include a schedule
optimisation. The results presented are extremely promising, with the transatlantic
Star-alliance case study consisting of 150 flights and producing a 7.7% overall saving,
even with scheduling constraints. However, the extent of the computational time
required, roughly 200 hours for 2500 formation combinations, shows the need for a
faster approach if the larger global assignment problem is to be assessed. The con-
tributions of these works, along with personal discussions between myself and the
authors, have provided the basis for the approach taken within this Thesis. The
conclusion is that the higher-fidelity approach exists but suffers from significant com-
putational requirements. To assess the massively combinatorial approach needed for

8



the global assignment problem, it is clear that a faster method is required.

1.2.4 Summary of Literature

The literature discussed provides motivation for the core aim of this Thesis: to address
the global routing and assignment problem for commercial formation flight. The
flight tests, aerodynamic simulations and analytical study help to not only show the
potential for formation flight, but to also quantify it. Work by Blake et al. [18, 19],
Wagner et al. [56, 100] and Vachon et al. [88, 99] all show significant drag reduction
figures. These numbers help to estimate formation drag-reduction values used within
this Thesis. Furthermore the work of Riobchini and Frozzoli [89] and more recently
Bower et al. [21,105,106] provide examples where using such drag-reduction numbers
can produce promising results.

Importantly, while the work by Xu, Ning, Bower and Kroo [105,106] provides an
excellent solution methodology for the commercial formation flight problem, it cannot
appropriately tackle the massively combinatorial global assignment problem.

1.2.5 Implementation of Commercial Formation Flight

The discussion of Section 1.2 shows that in order for formation flight to become a
part of commercial aviation a number of operational and regulatory factors will first
need to be changed. With these in place, it is still important to be able to outline
(or at least hypothesise) where formation flight fits within the different phases of
commercial flight today.

For any flight to operate within a controlled airspace flight plans must first be
filed, these detail a number of aspects of the flight such as route and fuel consump-
tion and must comply to safety and Air Traffic Control (ATC) requirments. For
airline companies these flight plans are most often submitted months in advance, as
schedules are planned and known long before the flights are flown, allowing for Air
Traffic Control (ATC) to best plan for busy and congested airspaces. The main three
phases of flight planning within ATC are Strategic, Pre-tactical and tactical [39].
The strategic phase is used to plan for overall traffic predictions and occurs anywhere
from months to two days before the flights. The Strategic phase is then followed by
a pre-tactical phase which occurs over the two days up until the flight, this allows
for some final adjustments to be made and the routes fine-tuned. The last phase is
the tactical phase, on the day of the flight where adjustments for air traffic flow are
made.

While the problem of formation flight would need to be addressed for each of these
three phases, the work of this Thesis mainly places itself within the strategic phase.
That is, given our main focus of the routing and assignment of formation flights, then
this occurs at least a number of days before the intended execution of the flights.
Therefore, given the huge number of flight plans submitted by airline companies, one
could imagine that this process of routing and assignment, specifically for formation
flight, might take place at an ATC level. Furthermore it is reasonable to imagine
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that the pre-tactical and tactical phases can be used to further improve the basic
formation routes, taking into account a whole range of extra factors.

1.3 Contribution Summary

The work explored throughout this Thesis contributes a number of novel ideas in
areas of routing and assignment for commercial formation flight. The following is a
summary of the key contributions:

A geometric routing methodology for commercial formation flight
A unique adaption of a Fermat-Torricelli mathematical problem to model the
formation flight problem. Allowing fast, analytical routing for theoretically
any sized formation, whilst including aspects such as minimum climb/descend
distances constraining and differential-fuel burn. This approach helps to tackle
the impact of the combinatorial nature of enumerating all possible formation
pairings.

Numerical method for formation routing through wind
Although wind-routing exists within single-aircraft routing and trajectory opti-
mization the process has not yet been explored for commercial formation flight.
This Thesis uses an active-set approach with a numerical optimizer to find
minimum-energy paths through a static wind-field.

An Estimated assignment process for improving geometric allocation
A simple adapted assignment process to improve an initial geometric estimated
MILP allocation of flights to formation fleets. A cost-estimating function, based
on the geometric approach, is used to predict the potential cost for the signifi-
cantly more complex wind-route.

Two-stage dynamic programming to mitigate effect of ground delay
Two previously unexplored methods are presented to try and mitigate the effect
uncertainty in take-off time has on flights looking to join in formation. The focus
is a two-stage dynamic programming formulation to calculate optimal-speed
control policies to follow for any possible realisation of delay.

Portfolio analysis for choosing risk-based formation assignments
Taking methods used extensively in economics and finance and applying them
to the formation flight assignment problem. Creating formation assignments to
incorporate aspects of risk and uncertainty. Efficient frontiers are calculated to
directly compare different assignments for the multi-objective optimization of
minimising both cost and risk-level.

Analysis of three distinct case studies with formation flight potential
The largest assessment of the global assignment problem currently available.
Three distinct flight lists of Transatlantic, EasyJet and Singapore Airlines flights
are routed and globally assignment to minimize total fuel burn.
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1.4 Associated Publications

The following papers, authored by myself and my supervisor Dr. Arthur Richards,
have been published as result of the work in this Thesis.

• T.E. Kent and A.G. Richards. Analytic Approach to Optimal Routing for
Commercial Formation Flight. Journal of Guidance, Control, and Dynamics,
Accepted, awaiting print publication, 2015.

• T.E. Kent and A.G. Richards. Accounting for the effect of ground delay on com-
mercial formation flight. In 2014 UKACC International Conference on Control
(CONTROL), July, 104-109, Loughborough, UK, 2014.

• T.E. Kent and A.G. Richards. On Optimal Routing For Commercial Forma-
tion Flight. In AIAA Guidance, Navigation, and Control (GNC) Conference,
AIAA Paper 2013- 4889, 1-11, Boston, Massachusetts, August 2013. American
Institute of Aeronautics and Astronautics.

• T.E. Kent and A.G. Richards. A Geometric Approach to Optimal Routing
for Commercial Formation Flight. In AIAA Guidance, Navigation, and Con-
trol (GNC) Conference, AIAA Paper 2012-4769, 1-17, Minneapolis, Minnesota,
August 2012. American Institute of Aeronautics and Astronautics.

1.5 Thesis Outline

Chapter 2 proposes a new method for evaluating large numbers of potential forma-
tions, based on a simplified geometric approach solution to the optimization of the
rendezvous and break away points. The method outlined is fast, analytic and scalable,
while being capable of theoretically solving for any sized formation. The simplified
geometric approach allows for millions of formation combinations to be assessed in
minutes. The ability to calculate all combinatorial possibilities in a reasonable time,
makes the globally optimal assignment solution process attainable. A case study of
210 transatlantic flights is first presented, illustrating the potential fuel saving results.
Furthermore this case study will also be used consistently within Chapters 3 and 5,
allowing directly comparable results.

While the method of Chapter 2 deliberately omits wind effects and assumes great
circle flight segments, the focus of Chapter 3 is to introduce formation routing in the
presence of wind. The idea will be to compare, and ultimately benchmark, the use of
the geometric approach and assignment to calculate an ‘approximate assignment’ to
the wind problem. A method for calculating wind-optimal formation routes through
a static, predictable wind-field is presented. It is shown that by using the geometric
approach to first attain an initial global assignment of flights into formations the
more complex routing can conceivably be left to a post-process. Furthermore an
estimated assignment approach is used to improve an initial geometric-assignment,
in the presence of wind, where results indicate comparable solutions whilst remaining
significantly less computationally intensive.

11



The work of Chapter 4 then focuses on assessing the impact of uncertainty in
take-off time of aircraft looking to join formation. Airport-specific probability density
functions quantify the level of probabilistic ground delay while two different methods
are introduced to attempt to mitigate its effects. A näıve hold-approach, allowing de-
lay to be easily absorbed at the rendezvous location, is first outlined. The problem is
then modelled using a state space approach, whereby a two-stage dynamic program-
ming problem is solved via value-iteration. Assigning optimal control speed-policies
for aircraft to follow en-route for any realisable level of delay. Finally through the use
of portfolio analysis, various formation assignment solutions are readily compared for
the multi-objective problem of simultaneous minimising cost and the associated risk.

Three distinct case studies are then presented in Chapter 5 to try and assess the
potential of commercial formation flight on a global scale for formations of size two.
The transatlantic case study used in Chapters 2 and 4 will be compared against a list
of 1300 European EasyJet flights and a list of 230 Singapore Airlines flights. Analysis
of results for each case study will be used to predict distinguishing features required
for a formation flight to be successful.

The work carried out during a six-month industrial placement at Airbus is pre-
sented in Chapter 6, where a door-to-door journey planner for road and air is de-
veloped to assess the connectivity of airports and the population reachable within
given time-frames. Open-source map data and routing applications is used to create
a road, airport and flight network, including time overheads such as check-in and
flight transfers.

Finally Chapter 7 summarises the key findings and conclusions of this Thesis, with
discussion of future research questions and possible extensions to the current work.
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Chapter 2

A Geometric Method for Optimal
Formation Flight Routes

2.1 Introduction

This Chapter focuses on a the core motivation of this Thesis and a key question in the
deployment of formation flight: which flights should join in formation? To answer
this question, two complex and interconnected problems must be solved:

i The routing problem: estimate the rendezvous and breakaway points for all
possible formation groupings and thus the fuel use for each;

ii The assignment problem: select a compatible set of formations from those con-
sidered to achieve minimum global fuel use.

Note that this chapter assumes fuel burn as a cost, Section 2.6 considers the
impact on timing and introduces scheduling constraints.

Studies based on individual pairings, looking only at the routing problem, have
shown potential positive trade-offs between the diversion to join formation and the
reduction in drag formation flight produces [18,19,60,63,105,106]. Formation routes
for five aircraft studied by Bower [21] focus on aerodynamic aspects such as wing-
tip separation. This, along with a case study, shows significant fuel saving potential
even with heuristically chosen routes. These prior works adopt numerical trajectory
optimization techniques [14, 20, 93] to calculate high fidelity solutions to the routing
problem. Once the routing problem is solved, evaluating the cost for each poten-
tial formation, the subsequent assignment problem is readily solved by a discrete
optimization [105].

The challenge in considering larger numbers of aircraft is the growth in the num-
ber of potential formations to be evaluated. For example, the 210-flight transatlantic
case study of Section 2.6 has roughly 22,000 possible pairings, and larger possible for-
mations introduce even more combinations. Xu et al. [105] used a detailed trajectory
optimization for a scenario involving 150 aircraft, but introduced a heuristic filter-
ing stage to reduce the number of formations considered. An alternative approach,
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adopted in this chapter, is to simplify the routing problem. Frazzoli [89] achieved
this by assuming constant fuel-burn rates and modelling the problem as a graph
search over possible rendezvous and breakaway points, showing potential savings for
an example with three aircraft.

This main focus of this chapter is to propose a new method for evaluating large
numbers of potential formations, based on a simplified geometric approach solution to
the optimization of the rendezvous and break away points. To achieve rapid solutions,
the method deliberately omits schedule and wind effects and assumes great circle
flight segments. Once the most promising formations have been identified, these
effects can be reintroduced in higher fidelity optimization [58,105]. Section 2.2 begins
by outlining the geometric approach to finding time-free optimal routes with few
constraints. An adaptation of the well known Breguet range equation [7] is introduced
in Section 2.4 where it is used to calculate both the total fuel burnt and also the rate
at which the fuel-burn changes during a flight. Section 2.3 describes the method for
extending the geometric approach to generate optimal routes for larger formations.
The costs of these formations can then be used within the ‘assignment problem’ of
Section 2.5 to obtain a globally optimal allocation of aircraft into formations. Finally,
a case study of 210 transatlantic flights is presented in Section 2.6 to illustrate all the
methods of this chapter and the results are compared.

2.2 The Geometric Method

This section introduces the route optimization method for a simplified case. Begin by
assuming no airspace restrictions, constant altitude, and constant rate of fuel burn
per unit distance. Two flights, Flight A and Flight B, fly from two distinct airports, A
and B, to a common destination airport, C. Under the assumptions, the optimal flight
will consist of two solo straight-line legs, from A and B respectively, to a common
join point P , then a shared leg from P to the destination airport C. The formation
routing problem is then defined as finding the point P joining A, B and C together,
such that the sum of the fuel burnt is minimized. Extensions for distinct destinations,
a spherical Earth and differential fuel-burn will be addressed in Sections 2.2.5, 2.2.7
and 2.4 respectively. Also, although we have defined points A, B and C as airports,
they could conceivably be defined as entry or exit points to airways or NAT tracks.

2.2.1 Using Arc Weights To Represent Formation Flight

A notion of ‘arc weighting’ will be used to incorporate the concept of the drag reduc-
tion benefits arising from flying in formation. Eurocontrol’s Base of Aircraft Data [42]
(BADA) outlines detailed operational and performance factors. The data contains
aircraft performance models for a wide range of common aircraft types. By only
looking to create formations during cruise, the climb and descent section of the flight
can be considered ‘sunk costs’, as they are carried out irrespective of any formation.
A constant nominal fuel-burn rate can then be taken directly from BADA, for each
particular aircraft, representing a per-distance fuel-burn rate. This fuel-burn constant
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is then used as the arc-weightings for each flight, to take into account distinct aircraft
types and corresponding differing rates of fuel-burn.

The proportion of fuel used along the formation arc of the flight should however,
be less than if the aircraft were not in formation. Studies by Ray [88] and Bower [21]
expect very reasonable drag savings (and thus a relative reduction in fuel-burn) for
aircraft flying in the up-wash of other formation members. The control and distribu-
tion of the formation, e.g. leader selection, is assumed to be determined separately,
and only an aggregate fuel burn rate for the whole formation is used for route opti-
mization. Ideally, this would be based on a detailed consideration of the aircraft types
involved. However, this would be a significant piece of work in its own right and is
beyond the scope of this thesis. For the purposes of this work, average formation fuel-
burn factors are estimated as shown in Table 2.1 using results from Ref. [18,19,60,63]
for varying fleet sizes. For example, if the front aircraft receives no saving while the
follower saves 20%, the resulting average is taken to be (1 + 0.8)/2 = 0.9 = λf,n rela-
tive to both aircraft in solo flight. The method will readily extend to a more detailed
determination of this factor based on formations of particular types of aircraft. While
initially, the formation discount will apply directly to distances flown, in Section 2.4
the discount will be applied to the drag instead.

Table 2.1: Weight factors simulating proportional formation fuel-burn distance for
size n fleets

Size of fleet (n) 1 2 3 4 5 6
Fuel use factor per fleet member (λf,n) 1 0.9 0.85 0.82 0.8 0.785

In terms of scalar arc weighting this means that at the formation stage of the
flight, for n members in the fleet, each member contributes the proportion λf,n (from
Table 2.1) of their own weighting and the total estimated fuel-burn per unit distance
on the formation arc is simply the sum of all these contributions.

For the two flights, Flight A and Flight B, leaving airports A and B, travelling
to a common destination C and wanting to join in formation via some point P . Let
the solo arcs AP and BP have arc-weightings of wA and wB respectively (taken from
BADA). The fleet has a size of n = 2 and so the weight of the formation arc PC is
wC = (wA + wB) × λf,2 = (wA + wB) × 0.9. With this in mind, the problem is then
to find the optimal location for this point P . The following sections look to use an
adaptation of the Fermat Point problem to solve this.

2.2.2 The Fermat Point Problem

The Fermat point problem [33, 51] is a classical mathematical problem posed in the
late 17th century, it states:

For a given triangle, ABC, on the Euclidean plane, find a point P such
that the sum of the distances ||PA||, ||PB|| and ||PC|| is minimized.

This is in fact equivalent to the formation problem if the weights wA, wB, wC are all
equal. Over the years, mathematicians have posed numerous ways of finding this point
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P , including derivative based methods, the use of mechanics and Fermat’s elegant
geometric solution. This section reviews an adaptation of the original approach, first
proposed via a series of letters between the mathematicians Fermat and Torricelli
[33, 51], creating a solution based on the geometric dualities of triangles and circles.

A

B

P
CP

A

B

C

(a) Triangle ABC with possible join
point P

A

B

P
C

(b) Circumscribed circles and subtending
lines concurrent at an optimal point P

Figure 2.1: A Fermat-Torricelli geometric construction solution

Take a triangle ABC and construct outwardly three equilateral triangles along,
and with side lengths corresponding to, the arcs AB, BC and CA as in Figure 2.1.
Then the lines from the outer vertex of each new triangle to its opposite vertex of
the original intersect at a single point (Figure 2.1(b)). This intersection is the desired
point P which minimizes the sum ||PA|| + ||PB|| + ||PC|| (sufficiencies ensuring
certain types of solution are explored by Shen [92]). An analogous result can also
be observed by constructing the corresponding circumscribed circles of each of these
three new equilateral triangles, creating a concurrency at the same optimal point
P . Mathematical proofs for Fermat point problems of this type (both planar and
spherical) are fairly abundant: for a deeper understanding of these available methods
the author invites you to read Refs. [4, 27,48,50,107].

One notable observation is the angles at which these arcs intersect [40] ∠APB,
∠BPC and ∠CPA are all 120 ◦. This result holds true with many studies of min-
imization observed in nature. For example the hexagonal structure of a honey-
comb [24], minimal surfaces in soap film experiments [28, 95] and even molecular
arrangements [45,83] all exhibit 120 ◦ angles.

2.2.3 Extending For Weighted Arcs

With the notion of weighted arcs, representing differing costs per unit distance, the
Fermat point problem can now be extended. For three vertices A, B and C and the
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Figure 2.2: Three point vectorial representation and corresponding angles

join point P , the scalar weights wA, wB and wC correspond to the arcs PA, PB and
PC respectively. The problem is then minimizing the sum of the weighted distances:

f(P ) = wA||PA||+ wB||PB||+ wC ||PC||. (2.1)

An analogy to this vectorial equation is to imagine a table with three holes, repre-
senting the locations of the points A, B and C. Then at each of the holes a massless,
frictionless string is passed through and the corresponding weight is tied to one end.
The remaining ends of these three strings are tied into a single knot. This system has
a natural mechanical equilibrium and this analogy coupled with the minimal energy
principle [51] implies that the location of the knot on the table at the mechanical
equilibrium is identical to that which minimizes Equation (2.1).

Therefore adapting the ABC triangle of Figure 2.1(a) for weighted arcs leads to
a vectorial equilibrium about the point P as in Equation (2.2) such that

wA
PA

||PA|| + wB
PB

||PB|| + wC
PC

||PC|| = 0. (2.2)

The law of cosines applied to Equation (2.2) leads to expressions θA, θB and θC for
the intersection angles ∠BPC, ∠APC and ∠APB respectively.

θA = cos−1

(−w2
B − w2

C + w2
A

2wBwC

)
,

θB = cos−1

(−w2
A − w2

C + w2
B

2wAwC

)
,

θC = cos−1

(−w2
A − w2

B + w2
C

2wAwB

)
.

(2.3)

It is important to note that these expressions are obtained solely from the input of
the three scalar weight values wA, wB and wC and therefore a priori of any physical
location [51].

2.2.4 Loci Of Possible Formation Join Points

It has been show that given only the three arc weightings, the specific angles of
interception θA, θB and what will be referred to as the ‘formation angle’, θC (i.e.
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the angle between the two solo legs of the flight), can be calculated. Knowing these
angles eliminates the need for a fixed destination vertex, C. Two fixed points A and
B and a formation angle θC , at which the trajectories must meet, describes the loci of
possible formation points (the dark lines in Figure 2.3) for all possible destinations.
Furthermore, from the formation angle, two circles with A and B on their perimeter
can be constructed. Each of the circles is comprised of two parts: the first contains,
on its boundary, all the points P such that ∠APB = θC , i.e. they meet at the angle
required by Equation (2.3), the other, all the points that meet at 180◦ − θC as in
Figure 2.3(a).

A similar approach to Torricelli’s in the original Fermat problem, of constructing
equilateral triangles on the sides of the ABC triangle, can also be used here. Firstly
along the arc AB two similar triangles ABX1 and ABX2 can be constructed as in
Figure 2.3(b). The side lengths of these two triangles will be in the same proportions
as the weights [51]. That is the ratios wA : wB : wC , ||AX1|| : ||BX1|| : ||AB|| and
||AX2|| : ||BX2|| : ||AB|| are equivalent. As the length AB is already known the
other two sides can easily be calculated. This generates two ‘back vertices’ X1, X2

as in Figure 2.3(b). Note also that the two circles, ‘inscribed’ by A, B and θC in
Figure 2.3(a) are in fact the same circles which also circumscribe the triangle ABXi

(i.e. the circle passes through all three points A, B and Xi) in Figure 2.3(a).

A

B

X1

X2

(a) Inscribed loci of possible
formation points given θC

A

B

X1

C2C1

C3

A

B

A

B

180°- C

C

(b) Back vertices of optimal
trajectory ensure all three in-
tercept angles are satisfied

A

B

X1

C2C1

C3

A

B

(c) The final optimal route con-
nects a back vertex to the des-
tination.

Figure 2.3: Possible Solution Points Given An Angle of Interception

Therefore given any pair of nodes {A,B} with three arc-weights wA, wB and wC ,
two back vertices can be constructed along with the corresponding loci of possible
formation points for any destination. Then for any destination C, the formation join
point must lie at the intersection of the line CX and the locus arc of possible join
points (at most only one of the back vertices will be used, with the choice depending
on the location of the destination node).
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(b) Trajectory between back vertices crossing loci of possible optimal
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Figure 2.4: Join and break points for two distinct routes
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2.2.5 Routes With Distinct Departure And Destination Nodes

Knowing the loci of possible join points a priori of a destination allows the assessment
of the more general problem of two routes with distinct departure and destination
nodes. Where the problem is finding not only a rendezvous location for optimal
formation flight, but also the point at which a formation should break away.

X1 X2

Region 1

X2 to C

Region 4

B to C

Region 3

A to C

Region 2

X1 to C

Figure 2.5: Snapshot of regions where a destination node C can be located and the
corresponding connecting path.

Given two solo routes between AC and BD (Figure 2.4(a)), first the circles and
back vertices are calculated for each pair {A,B} and {C,D}. Then, as in Fig-
ure 2.4(b), the arc joining a back vertex Xi of {A,B} to a back vertex Yj of {C,D}
(i, j ∈ {1, 2}) should cross both circles at the required angles (Figure 2.4(c)). Which
would result in two crossing points, P and Q, which are the respective join and break
points of the formation (Figure 2.4(d)). However, If no single arc exists that satisfies
the angles of Equation (2.3) on both circles, then the optimal path is the shortest
path between either Xi and C or D, or Yi and A or B so that the angles are satisfied
only once. If that is not possible then the formation arc will simply connect A or
B to either C or D. This is referred to as being ‘caught’ at an airport and in most
scenarios is undesirable as aircraft need room to climb to an appropriate altitude. A
solution to this however, is outlined in the following Section. The departure side for
each of these cases is outlined in Figure 2.5. For a given destination node C (which
could also represent a back vertex), its location will be in one of four regions. Regions
1 and 2 outline when a back vertex is used while Regions 3 and 4 are when the route
is instead ‘caught’ at an airport.

2.2.6 Incorporating A Minimum Distance To Climb and De-
scend

Some of our early results indicated that many join points were either at the airports
themselves, as they were being ‘caught’ (as the destination was in Region 3/4 of
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Figure 2.5), or very close to an airport. Although this seems like a reasonable result,
practicality issues could likely prohibit such a route. In this scenario, flights would
either need to already be at a cruising altitude or else take off in formation (possibly
on a parallel runway which would rule out many airports) and then engage in a series
of step climbs in formation until they reached a cruising altitude. The implications
of this, along with the difficulty of achieving formation drag savings along the way,
meant the decision was made to only look at joining formations once aircraft are at
a cruising altitude.

Horizontal distances between take-off and an altitude at which formations can
be joined (similarly a formation altitude and landing) are calculated for each flight.
Realistic rates of climb and descent for any given aircraft can be taken from BADA,
allowing the calculation of these radial distances. The distances then define the radii,
rA, rB and rC , of circular regions around the airports A, B and C respectively. If
the optimal formation point lies within any of those regions (as in Figure 2.6), it
should not be used and instead be moved onto the region’s perimeter. The problem
is still to minimise Equation (2.1) but subject to ||PA|| ≥ rA, ||PB|| ≥ rB and
||PC|| ≥ rC . This constrained minimisation problem can still be solved using similar
geometric methods outlined in this chapter. Take the example of Figure 2.6, whereby
the intersection is too close to node A and therefore violates ||PA|| ≥ rA. If P is to be
moved onto the perimeter, the first point at which it can do so is when ||PA|| = rA.
Substituting this into Equation (2.1) results in

f(P ) = wArA + wB||PB||+ wC ||PC||. (2.4)

Therefore when minimising f(P ), wArA can be considered a constant, being in-
dependent of the location of P and so any choice of wA will result in an analogous
minimisation problem. While the relations of Equation (2.3) still hold for the con-
strained problem (as they are true a priori of location and therefore any distances),
they will not necessarily be satisfied by points on the radial circles. Therefore in
order to satisfy both the angles equation and the radial constraints the weights must
be adjusted. Adjusting wA does not effect the minimisation problem and therefore
the constrained problem becomes the problem of picking the smallest wA so that the
angles of Equation (2.3) and the radial constraints are both satisfied. In the absence
of an entirely analytic solution to finding the necessary value of wA, a simple bisection
search can be used. Given an interval for wA to be in, wA is predicted and then the
resulting P is found, the interval is then reduced until ||PA|| = rA. This process
is shown in Figures 2.6(c) and 2.6(d). In line with the table and weight analogy of
Section 2.2.3, if P is too close to node A, one can imagine slowly reducing the hanging
weight wA until P is sufficiently far enough away.

2.2.7 Extension Onto The Sphere

An important note is that the original Fermat Problem, and adaptations described in
this chapter, have been inherently planar. As such any planar solutions for routing for
formation flight will not be optimal on the globe. The properties of a curved surface
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Figure 2.6: New join point required to be at least a certain distance from each airport
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mean it is impossible to find a 2D Earth projection system which is isometric [97]
(i.e. preserves both angles and distances). The weighted Fermat point problem has
been extended to surfaces [27, 48, 50, 107] and to even higher dimensions [4]. Most
notably Zachos [107] proves Equation (2.3) holds for the problem on the sphere.

Therefore it is possible to take the Earth to be spherical (with points constrained
to its surface) and translate our method for use in spherical coordinates, by increasing
the dimension of each element of the method. 21,945 lines become planes, intersecting
the Earth through its center, creating great circle paths. Inscribed circles become
inscribed spheres which, as we are constrained to the Earth’s surface, intersect the
Earth along a planar surface known as a ‘small circle’. Each one of these small circles
will contain a back vertex, two nodes and a loci of formation points all of which
will be coplanar. Therefore the original two-dimensional problem is translated to the
three-dimensional coordinates of this small circle. Where the plane, defined by the
great circle path between the back vertex and the destination, intersects the small
circle determines the optimal formation point. This provides an analogous solution
on the sphere while preserving the angles of intersection [107] and previously outlined
methods. It is somewhat intuitive that the angles will be the same as the 2D case: as
an ever smaller region around the join is considered, the sphere appears flatter and
the great circles appear straighter, but the angles between them remain the same.

The transition to the spherical problem also enables the more appropriate dis-
tance calculation using great circle paths. In general, commercial flights do not fly
completely great circle paths due to a number of factors, notably the effects of wind
and weather. Although this chapter assumes only great circle paths, the Authors
have looked into the problem of more complex routing. Routing through winds is
explored in Chapter 3 whereby the approaches of this chapter were used to first solve
the assignment problem (as in Section 2.6, then the much smaller subset of forma-
tions is post-processed to take into account the more complex wind-routing problem,
allowing a balance of tractability and realism.

2.2.8 Verification

An exhaustive search for 5000 random pairings of solo routes has been used to verify
the spherical geometric method. For each pairing all possible join points on a discrete
grid (increments of 0.01 degrees of latitude and longitude) are calculated and one with
the lowest cost is taken. Figure 2.7 shows the difference in total formation distance
of the geometric solution against the brute force approach. Figure 2.7(a) shows the
frequency of a difference in solution. There are no instances of the geometric method
giving a worse result and it is clear that the geometric method accurately finds the
optimal point of formation, whilst taking a fraction of the time.
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2.3 An Extension for Larger Fleet Sizes

2.3.1 The Decoupled Problem

The framework outlined in Section 2.2 is a powerful result, allowing the routing
problem to be decoupled, reducing pairs of nodes to their back vertices and inscribed
circles. The optimal route for any formation appears to project from a back vertex
regardless of destination. As this information is independent of the destination it
depends only on the relative weights and fixed pairs of nodes. This fairly elegant
method of projecting from a back vertex can be further extended to not only solve
for formations of 2 aircraft, but theoretically any size.

Given the three flights, Flight A, Flight B and Flight C (as in Figure 2.8(a)),
first take two of them, for example Flight A and Flight B. Then, by finding the back
vertices XFlight AB, YFlight AB whose arc crosses at the required angles, a ‘virtual’
Flight AB can then be created. The projected route is going from XFlight AB to
YFlight AB and is shown in Figure 2.8(b). The third route Flight C can now be added.
This is done just as before, only the arc weightings need to be updated to take into
account the new size of the formation at each stage of the route. That is, as Flight AB
contains two aircraft it will burn fuel at a combined rate of wFlight AB = (wFlight A +
wFlight B)×λf,2, while Flight C is weighted at wFlight C . The final formation weighting
will then be wFlight ABC = (wFlight A + wFlight B + wFlight C) × λf,3. The augmented
problem is then solved where Flight AB and Flight C should join (the point PABC)
and break away (the point QABC) as in Figure 2.8(c), with the updated weightings
wFlight AB, wFlight C and wFlight ABC . All that is left is to split Flight AB back to two
separate flights and update the points PAB and QAB based on their respective new
destinations PABC and QABC as Figure 2.8(d) outlines.

Figures 2.8(a) and 2.8(d) depict the case where Flight A joins Flight B then
Flight AB joins Flight C, and breaks away in a similar way. However, realistically

24



Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

Flight A

Flight C

Flight B

(a) Solo routes Flight A, Flight B and Flight C

Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

Flight A

Flight C

Flight BFlight ABCPAB

PABC

QAB

QABC

Flight AB
XFlightAB YFlightAB

Flight C

PAB QAB

(b) Create projected ‘virtual-route’ Flight AB between back vertices XFlight AB and YRAB

Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

(c) Join Flight AB with Flight C via new back vertices XFlight ABC and YFlight ABC

Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

Flight A

Flight C

Flight BFlight ABCPAB

PABC

QAB

QABC

(d) Update Flight AB join points given the future join to give final route

Figure 2.8: Join and break points for three distinct routes
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it is also necessary to find the order of joining that minimizes total fuel-burn for all
flights. Therefore the various combinations of the order of joining formation, including
scenarios whereby it might be optimal for only two routes to join while one flies solo,
must be also be computed and then the minimum is taken.

2.3.2 An Example Of Creating Fleets Of Size 2 And 3

For any 3 distinct routes, formations of size 2 can be made in three different com-
binations, each with its own cost. When trying to find fleets of size 3 there are an
additional nine combinations, consisting of 2 choices from 3, one for the join-up and
one for the break-away. For example, looking at one of the combinations, given the
two routes (both flown by an Airbus A340-300):

Flight A = {Atlanta, Barcelona}, F light B = {Cincinnati,Frankfurt},

and by using the above methodology with weight values from Table 2.1 results in the
desired points for the formation flight. Figure 2.9(a) shows the formation of Flight A
and Flight B. The total solo great circle distance, and therefore distance at which
fuel is burnt over, for Flight A and Flight B is 14, 359 kmeq, where 1 kmeq is the
equivalent fuel burnt by an aircraft flying solo for 1 km. When flown in formation
the fuel-burn (the kmeq covered using the discounted fuel-burn rates) is reduced by
737 kmeq to 13, 622 kmeq. This equates to a saving of roughly 5.1%.

By adding a third flight:

Flight C = {Miami, Zurich},

and following the previously outlined method and evaluating all combinations, the
optimal ordering of join and break points and their respective locations (as shown
in Figure 2.9(b)) can be found. The order of joining formation is: Flight A joins
Flight C, then the virtual Flight AC joins Flight B. Flight ABC then flies over the
Atlantic in formation followed by Flight A first breaking away, leaving Flight BC,
then Flight B and Flight C split to fly to their respective destinations. The resulting
total saving is about 8.4% against all three flying solo.

This outlines a simplistic framework for deciding the locations where fleets of
size 2 and 3 should join up and break away in order to minimize total fuel-burn.
Furthermore the use of virtual flights, as described in Section 2.3.1, in principle,
means it is possible to solve for fleets of any size by decomposing into permutations
of sub-problems of size 1, 2 and 3.

2.4 Modelling Aircraft Fuel-Burn

2.4.1 Differential Fuel-Burn Model

A nominal rate of fuel-burn for the aircraft-specific arc-weightings acts only as a
reasonable estimate for the final problem. This nominal amount, however, does not
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(a) Optimal formation route for the two routes Flight A and Flight B

(b) Optimal formation route for the three routes Flight A, Flight B and Flight C

Figure 2.9: Optimal Join and Break points for fleet size 2 and 3
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incorporate the fact that as an aircraft flies it burns fuel, so decreases in weight,
resulting in a lower rate of fuel-burn at later stages of a flight. For example, if one
flight travels 1000 km before it meets another, which has flown only 300 km, then
a nominal ratio of weights may not accurately reflect this. Therefore the method
needs to be able to move from a notion of a constant nominal fuel-burn to one which
changes with respect to distance flown. Furthermore, in this model the drag reduction
benefits of flying in formation will be applied directly to the coefficient of drag via a
discounting factor λ.

Using a rearrangement of the Breguet range equation, outlined by Anderson [7],
a model of an assumed weight change profile for each aircraft can be developed. Let
dW denote a change in weight W of an aircraft due to fuel consumption over an
increment of time, dt. Assuming constant level flight during cruise, thrust available
TA equals thrust required TR. Thus, given a thrust specific fuel consumption factor,
Ct the following relation holds:

dW = −CtTRdt, (2.5)

which rearranged with respect to time, dt, is

dt = − dW

CtTR
. (2.6)

For the incremental distance, dr, travelled by the aircraft, over an increment of
time, dt, Equation (2.6) is multiplied by a stream-free velocity V∞ so

dr = V∞dt = −V∞dW
CtTR

, (2.7)

where, given steady level flight, V∞ is constant. Rearranging Equation (2.7) leads to
the rate of fuel burnt per unit of distance

dW

dr
= −CtTR

V∞
. (2.8)

Then for a given coefficient of lift, CL, and drag, CD, TR = W
CL/CD

. Using the

definition that for a given density ρ∞, V∞ =
√

2W
ρ∞SCL

results in

dW

dr
= −CtCDW

V∞CL
= −

√
ρ∞S

2

Ct

C
1/2
L /CD

W 1/2. (2.9)

To include the formation drag reduction a discounting factor λ is used and the
coefficient of drag is therefore replaced by CD = λCDsolo

. Assuming constant Ct, CL,

CD and density ρ∞ (at a constant altitude) then γ =
√

ρ∞S
2

Ct

C
1/2
L /CDsolo

can be used

as the contribution of the constant terms. Equation (2.9), for a given weight W and
drag-discounting factor λ, then becomes

dW

dr
(W,λ) = −λγW 1/2. (2.10)

28



The constant terms of γ can all be calculated directly from BADA while the W
required to evaluate this equation is determined after a certain flight distance, by
following through with this derivation enables it to be calculated. First integrate
dr between the limits r = 0 (when W = W0, the initial weight) and r = R (when
W = W1, the final weight),

R =

∫ R

0

dr = −
∫ W1

W0

dw

λγW 1/2
=

∫ W0

W1

dw

λγW 1/2
. (2.11)

Given λ and γ are constant then

R =
1

λγ

∫ W0

W1

dW

W 1/2
=

2

λγ

(
W

1/2
0 −W 1/2

1

)
, (2.12)

completing the derivation of the Breguet range equation [7].
Equation (2.12) can be rearranged to give the final weight W1, given an initial

weight W0, discount factor λ and distance flown R:

W0(W1, λ, R) =

(√
W1 +

λγ

2
R

)2

. (2.13)

This equation starts with a fuelled aircraft (i.e. knowledge of W0) and gives an
estimate of the final aircraft weight, W1, after flying a given distance, R, with a drag-
discounting factor λ and thus W1 is a function of initial weight W0, distance and λ.
Similarly, given a final weight, W1, (i.e. when all normal fuel has been used) one can
estimate the ‘fuelled’ initial weight W0 needed to fly a distance R with discount factor
λ and thus W0 is now a function of final weight W1, distance and λ:

W0(W1, λ, R) =

(√
W1 +

λγ

2
R

)2

. (2.14)

Equations (2.13) and (2.14) are exploited in the following sections to both estimate
the fuel burnt and estimate the arc-weightings used in the geometric method.

2.4.2 Initial Weight Estimation

In order to predict the fuel burn rate at different points along a flight an initial
weight value is needed. The total initial fuel is defined to be the fuel required to fly
the entire journey plus enough reserve fuel. The initial fuel will be a large factor in
the overall take off weight. In general, formations must deviate from their individual
solo routes in order to meet up with other formation members, increasing the total
distance travelled (even if they burn less fuel in doing so). Therefore in order for
an aircraft to safely fly a formation route it must, as a conservative estimate, carry
enough fuel so that it could, if necessary, fly the longer ‘formation’ route entirely solo
without any reduction in fuel-burn. In general this means that any aircraft planning
to join in formation must carry more fuel relative to the same aircraft flying solo and
in turn it will burn fuel at a slightly increased rate. As there are currently no rules
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in place for commercial formation flight to address this, an assumption is made that
for either solo or formation flight each aircraft must carry enough fuel to take off,
land and fly 110% of the full cruise distance solo. This additional 10% of the cruise
distance will represent the reserve fuel requirement.

Finally in the absence of specific aircraft payloads this work assumes the same
nominal payload of 70% that is used in BADA and so the Zero Fuel Take Off Weight
(ZFTOW) can be taken directly from BADA. To this ZFTOW, the weight of the fuel
required is then added to reach an estimate for the initial weight W0. This assumption
means that the initial take off weight is a function of cruise distance. This can be
incorporated into the weight Equation (2.14) using λ = 1 and R = 110% of the
formation distance.

2.4.3 Differential Fuel-burn Arc-weightings

At the point of rendezvous (and similarly break-away) each aircraft will have burnt
a certain amount of fuel, be a particular mass and therefore burn fuel at a particular
rate. The difference in the individual amount of fuel burnt (and the range of fuel-
burn rates) to reach the rendezvous (or break-away) point may be vast, but at least
at a point-wise level one can consider the fuel-burn rates to be essentially constant.
Therefore it is only necessary to calculate the point-wise fuel-burn arc-weightings at
the rendezvous and break-away points for use within the geometric model. These can
be calculated from Equation (2.10), using the current weight at the join point Wjoin

(or similarly break point Wbreak) and the current discounting factor λ.
Optimal formation paths will still be built up of great circles, with the join angles

calculated for the rate of fuel being consumed at the point of join. That is, using
Equations (2.8) and (2.13) all the arc-weights at the join:

wAjoin
=
dWA

dr
(WAjoin

, λAsolo
)

wBjoin
=
dWB

dr
(WBjoin

, λBsolo
) (2.15)

wCjoin
=
dWA

dr
(WAjoin

, λAform
) +

dWB

dr
(WBjoin

, λBform
)

or similarly the arc-weights at the break point:

wAbreak
=
dWA

dr
(WAbreak

, λAsolo
)

wBbreak
=
dWB

dr
(WBbreak

, λBsolo
) (2.16)

wCbreak
=
dWA

dr
(WAbreak

, λAbreak
) +

dWB

dr
(WBbreak

, λBbreak
)

can be calculated and the method of Section 2.2 can then be used. For solo flight
λAsolo

= λBsolo
= 1, while during formation this work assumes that the discounting

factors during formations are λAform
= λBform

= λf,2, that is, an equal share of
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the discount for all formation members. The values for WAjoin
(similarly WBjoin

) are
calculated according to W1(WA,0, 1, RAjoin

) where RAjoin
is the distance from Adeparture

to the join point and WA,0 is the initial weight of A. The values for WAbreak
(similarly

WBbreak
) are calculated according to W0(WA,1, 1, RAbreak

) where here RAbreak
is the

distance from Adestination to the break point and WA,1 is the final weight of A.
The following outlines the method for estimating the differential arc-weightings

for a formation route. This is essentially a fixed-point iteration algorithm, starting
with nominal entries for initial values and then updating and recalculating through
each iteration to improve the solution. The steps are as follows:

1) Take the inputs of two flights: The aircraft types and departure and destination
airports.

2) Using BADA, assign nominal initial values for: Aircraft initial masses W0 and
Geometric weights wA , wB, wC for both join and break point.

3) Find the optimal formation route.

4) Calculate the distances flown by each flight for the formation route.

5) Calculate the aircraft fuel burn for the given distances using Equation (2.13) or
Equation (2.14).

6) Update estimated initial masses W0 and final masses W1 based on fuel required.

7) Update Geometric weights wA, wB, wC for both join and break point using
Equations (2.15) and (2.16)).

8) Calculate total fuel burnt for each flight: W0 −W1.

9) If the difference between the new geometric weights and previous ones is signif-
icant enough, repeat steps (3)-(9).

In the transatlantic examples studied in Section 2.6, this algorithm converged in
two or three iterations, even with significant variation in weighting factors between
rendezvous and break away.

2.5 The Global Fleet Assignment Problem

Given the optimized routes and costs for all possible pairings, it remains to select
compatible fleets. That is, by assigning each aircraft to one formation, find the
subset of all possible formations which minimises the total cost. This is known as the
fleet assignment problem.
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2.5.1 Fleet Assignment Using A Mixed Integer Linear Pro-
gram

Each flight can only belong to one formation (or fly solo), a Mixed Integer Linear
Program (MILP) solver is used to generate the optimal subset of formations which
minimise the total cost. The optimization problem, based on similar work by Xu et
al. [105], is formulated as follows: for Na aircraft there are Nf possible favourable
formations, that is formations which produced a fuel saving, including Na solo for-
mations (those which do not produce savings are discarded). A pairing, pj,i = 1, if
and only if aircraft i is included in formation j. Furthermore if formation j is used
it will incur a cost of cj. The binary choice is then, whether formation j is chosen in
the solution, (so xj = 1) or not (xj = 0). Therefore the MILP is used to optimally
assign each aircraft into a formation by choosing the state of each xj. That is:

minimize
x

Nf∑
j=1

cjxj,

subject to

Nf∑
j=1

pj,ixj = 1, ∀i ∈ {1, .., Na},

xj binary, ∀i ∈ {1, .., Na}.

(2.17)

Therefore there are Nf variables and Na constraints, so solving in such a way is
highly effective for smaller problems. However, a MILP’s complexity grows with the
number of variables, number of constraints and the convexity of the problem [47].
The non-convex nature of this problem, i.e. there are many possible local minimum,
means that finding a global minimum is already a difficult task. Therefore as the size
of the problem increases (i.e. the number of aircraft or formations) the amount of
resources needed to solve the assignment problem will also increase.

2.5.2 The Combinatorial Impact

For a formation size n, from a list of Na possible aircraft, the number of possible
formations that can be made is calculated by the binomial coefficient:

Na choose n =

(
Na

n

)
=

Na!

n!(Na − n)!
for 0 ≤ n ≤ Na. (2.18)

This number grows dramatically with an increase to either Na or n and is the main
reason for developing the quick geometric approach of Section 2.2 for calculating the
formation routes. When considering the global problem, although the number of
routes Na will vary the most, it is combinatorially more important to keep n low.
Very roughly speaking, an increase to Na by an order of magnitude, will increase
the number of combinations by n orders of magnitude. Similarly, with Na fixed,
increasing n by 1 results in an increase in combinations by a factor of Na/(n +
1). Therefore an increase in n by 2 would then increase combinations by N2

a/(n +
2)(n+ 1). This increase in combinations impacts both aspects of the problem, firstly
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Table 2.2: Binomial coefficients for varying number of aircraft n or formation size k

100 Aircraft 500 Aircraft 1000 Aircraft
Formation size 2 4,950 124,750 499,500
Formation size 3 161,700 20,708,500 166,167,000
Formation size 4 3,921,225 2,573,031,125 41,417,124,750

the routing problem, as more formation routes need to be calculated, and secondly
the assignment problem, with each additional flight adding a constraint and each
additional combination adding a variable.

The geometric method has been developed to be a very fast way of calculating
individual formation routes, making it possible to evaluate lots of combinations very
quickly. However there comes a point when the combinatorial effect overcomes this
computational advantage. One can see from Table 2.2 how changes in Na or n can
quickly effect the number of combinations that need to be evaluated. Therefore for
much larger problems it is a balancing act, between the number of flights Na consid-
ered and the size of the formation n. Despite this, it should not provide too much of
an issue, as global lists of flights can be partitioned in a number of ways to keep n rel-
atively low. Examples of partitioning are direction and location: such as eastbound
transatlantic; time of day, morning or evening; and individual airline companies.
These choices are, on the most part, outside the scope of this chapter, however the
following case study demonstrates an example of 210 eastbound transatlantic flights.

2.6 Case Study: Transatlantic Formation Flights

Using the methodology of the previous sections, an OAG dataset for the month of
September 2010 of 210 common transatlantic flights, between 26 US and 42 Euro-
pean airports is now examined. Each flight has a particular aircraft to fly it and so
individual performance factors can be taken from BADA.

The aim is to create formations in order to minimize the total cost (kg of fuel
burnt) of the entire fleet. Each flight is treated as non-greedy, doing what is best
for the fleet as a whole rather than individual gain. In this sense the fleet could be
thought to represent a single airline company. Furthermore, remaining with our initial
assumptions, the results are also time-free, based on the optimal location for joining
a fleet and breaking away and are therefore not constrained to a specific schedule.
In order to directly compare time-free solo routes with time-free formation routes,
aircraft are instructed to fly at speeds which minimise their fuel-burn (or while in
formation, the total fuel-burn of all members). An analysis of the possible impact of
scheduling on formation flight is explored in Section 2.6.4.

As discussed in Section 2.2.6, minimum horizontal distances to climb and descend
are used and are calculated based on rates of climb and descent in BADA. The
inclusion of this ensures the join and break points lie suitably far away from each
airport, in order to allow each aircraft to reach a fixed cruising altitude of 37,000 ft.
The case study is evaluated for two maximum formation sizes, which are: the n = 2
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Table 2.3: Fuel Saving Against Their Respective Solo Routes for Formations of Size
2 and 3.

Computation Time (mm:ss)
Formaton Size Combinations Route Enumeration MILP Fuel Saving

2 21,945 00:11 00:03 8.7%
3 1,521,520 45:00 10:12 13.1%

problem and the n = 3 problem. Finally the fixed proportional discounting rates
of λf,2 = 0.9 and λf,3 = 0.85 (from Table 2.1) are used to represent the fuel saving
benefits of formation flight.

All the methods to find the optimal formation route outlined within this chapter
have been implemented in Matlab. The MILP used in the assignment problem is first
formulated in Matlab and then run through Gurobi’s [62] MILP solver. Both stages
of the problem were implemented on the same machine: Macbook Pro - 2.4GHz i5
with 16GB of RAM.

2.6.1 For Formations Of Up To Two Aircraft

Using all the methods outlined in the previous sections, all 21,975 formations of size
2 were calculated along with each corresponding fuel-burn cost. This took roughly
0.0005 seconds per combination resulting in a total time of around 11 seconds. Then
given the cost for each possible formation (including solo flights), the MILP was
run, taking a further 3 seconds, and resulted in the 210 flights being assigned to
105 formations of size 2, (Figure 2.10(b)) with the entire process taking 14 seconds.
Compared with solo flight, the total average saving was a very reasonable 8.7%.

2.6.2 For Formations Of Up To Three Aircraft

For formations of size 3 there are 1,521,520 possibilities, followed by the 21,945 for-
mations of size 2, bringing the total number of combinations to evaluate to 1,543,465.
The 70× increase in combinations has lead to a 245× increase to enumeration time.
This is due to the increased complexity of calculating formations of size 3 and the
need to evaluate all different orders of joining and breaking away. The mean individ-
ual formation computation time has increased to roughly 0.0018 seconds (about 3×
that of a formation of size 2) and amounts to 45 minutes for all combinations.

The MILP also suffers from the increase in combinations and takes just over 10
minutes to optimally assign the formations. Therefore an optimal solution can be
calculated for formations of size three in under an hour. This runtime could be
substantially reduced, if required, by parallel evaluation of the formation costs.

The 210 flights were assigned into 70 formations of size 3 (Figure 2.10(c)). The
average fuel-burn saving of the formations of size 3, compared to solo flight, was
13.1%.
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(a) Original solo flights

(b) Formations of size two

(c) Formations of size three

Figure 2.10: Transatlantic Formation Routes
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Table 2.4: Deviation (km) in route distance between formations and their solo routes.

Formation total Per aircraft
Formation size With common airport Min Avg Max Min Avg Max

2 72 (69%) 0 26 240 0 13 190
3 69 (99%) 0 70 530 0 23 308

2.6.3 Comparison Of Results

The first observation is that many formations were made between routes which re-
quired little deviation from their original solo path (the levels of deviation between
formation and solo routes can been seen in Table 2.4). Even though distance to
climb and descend restrictions were implemented, many pairings found the best gain
to be between other flights that shared either their departure or destination airport
(all flights are distinct so could not share both). These low deviations also mean a
minimal increase to both the amount of reserve and main fuel required for each flight.

For n = 2, all aircraft were assigned into pairs and so there were 105 final pairings.
Of these pairings, 72(69%) shared either a departure or destination airport. The total
formation deviation (i.e. the total difference in distance between the formation and
solo route for all formation members) ranges from 0 km to 240 km, while the average
over the whole fleet remains low at around 26 km for the entire formation, or 13 km
per formation member.

For n = 3, the 210 flights were all assigned into 70 formations of 3. For the 70
formations, 69 (99%) shared at least one common airport with other fleet members.
Furthermore of these, 29 (41%) shared exactly 1 airport, 26 (37%) shared exactly 2
and 14 (20%) sharing exactly 3 airports (as all flights were unique, the maximum
number of common airports possible was 3). The total deviation ranged between 0
and 530 km with an average fleet total of 70 km resulting in a per aircraft average
deviation of just 23 km.
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Figure 2.11: Deviations In Distance Between Solo And Formation Flight

The results in Table 2.4 along with Figure 2.11 show that the formations who
achieve greater savings are, as expected, those who need to deviate from their solo
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routes least. There is clear trend in Figure 2.11 towards lower deviation and higher
fuel-burn percentage savings (some of the outlying results are likely due to the geo-
graphical sampling of the airports, for example the west and east coast of the US).

2.6.4 Analysis of Aircraft Scheduling On Formation Flight

The development in this Chapter has optimized purely for fuel use and ignored the
impact of scheduling. However, scheduling factors such as crew rosters, passenger
demand and airport capacity all influence flight timing and are included in multi-
objective schedule optimisation [10, 65, 94, 105]. The incorporation of scheduling ob-
jectives in formation flight is beyond the scope of this thesis. However, this section
shows how the effect of formation flight on scheduling can be analyzed and con-
strained.

One indicator of likely schedule impact is the deviation. The per-aircraft average
deviations in route distance between formations and their solo routes as outlined in
Table 2.4 are relatively low, at around 20km (or roughly 1 minute at mach 0.8). This
means that per-aircraft flight durations for formations can remain close to their solo
counterparts.

Given a formation and its optimized route, determined using the methods pre-
sented, the formation’s schedule impact can be evaluated. This is measured in terms
of the total change in take-off times in minutes, assuming that all flights in the for-
mation land no later than their original scheduled landing time. It is equivalent to
the total delay if no flight takes off earlier, or any other sharing of the schedule ‘shift’
between the flights in order to accommodate the formation. Once all the forma-
tions have been evaluated, it is then possible to discard all those whose take-offs are
shifted by more than a certain threshold, prior to solving the assignment problm as
in Section 2.5.

Figure 2.12(a) shows the variation in total fuel saving with the maximum permit-
ted take-off change for the transatlantic case study in formations of two aircraft. As
expected, the fuel saving decreases as the take-off change limit is tightened. How-
ever, roughly 8% saving is still available without changing any take-offs by more
than an hour, and 6% is available with no changes of more than five minutes. The
background of this result is explored in Figure 2.12(b), which shows that even with
very long schedule shifts available, the average take-off time change is about two
hours. The implication is that the transatlantic flight set in the case study includes
a large selection of flight pairs that can benefit from formation, including many with
compatible timing.

2.6.5 Utilisation Of Potential Saving

Finally it is interesting to analyse the fuel-burn savings compared to the maximum-
achievable potential of the routes. For n = 2, λf,2 = 0.9, meaning if both aircraft
started and finished in formation, observing the fuel-burn saving over the entire flight,
the maximum achievable saving would be 10%. As outlined in Section Section 2.2.6,
aircraft need time to climb and descend and so cannot save fuel over the entire flight.
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Allowing for this means that in the case of the 210 transatlantic flights, on average,
for 7.2% of the flight the aircraft is unable to achieve any fuel reduction benefits.
This leaves 92.8% of the flight available for fuel-burn saving by flying in formation.

With all this taken into account the average maximum-achievable-formation-saving
is actually 9.3%. Therefore for n = 2 the case study results of 8.7% represent a 94%
utilisation of the possible savings. Similarly for n = 3, λf,3 = 0.85 which leads to
an average maximum-achievable-saving of 13.9%. In this case the 70 formations of 3
achieved 13.1%, resulting in a utilisation of 94%.

Therefore what this utilisation metric can quickly express, is how well suited a
group of flights is to flying in formation, with the eastbound transatlantic case study
being a good example. The routes are all in a similar geographical location, heading
in a similar direction and so achieve a high percentage of utilisation.

2.7 Summary

This Chapter has explored a method for finding optimal routes for formation flight.
Firstly an extension to the Fermat-Torricelli problem allowed the decoupling of a
complex problem, providing a fast and effective framework to find optimal forma-
tions for a given list of routes. Using a set of general aircraft performance coefficients
from Eurocontrol’s Base of Aircraft Database allows a more accurate representation
of routes containing distinct aircraft to be incorporated into the solution. The intro-
duction of a differential aircraft weighting scheme allows formation fleets to be more
accurately assigned and routed to account for differing aircraft efficiencies. The sim-
ple iterative-updating scheme also allows room for possible expansion in future, such
as a more accurate calculation of the specific proportionality discount factor between
particular aircraft pairings.

The methods and fundamentals of this Chapter have been designed to be both
extensible and scalable. Allowing assessment of the potential of formation flight, on
large sets of routes and varying sizes of formation fleets, while remaining computa-
tionally tractable. The analytic nature of the proposed method means millions of
possible combinations of formations can be quickly calculated, allowing a Mixed In-
teger Linear Program to tackle the global fleet assignment problem. The outlined
methods have then been tested against a case study, of a representative-region of
possible formation flight, for 210 transatlantic flight routes. Despite some of the dis-
cussed combinatorial impacts, the globally optimal formation fleets for the case study
were found in under an hour. Results show possible average fuel-burn savings against
solo flight of around 8.7% for formations of 2 and 13.1% for formations of up to 3.
While even for a relatively small problem, the optimal results had a high degree of
utilisation against maximum achievable saving.

This details some of the core methodology used throughout this Thesis to find
solutions to the formation flight routing and assignment problem. While the use
of an analytic approach outlined is somewhat simplistic and requires a number of
assumptions to be made, it allows for tractability within the global problem. It will
be shown in Chapter 3 that this geometric methodology of calculation of all formation
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combinations followed by a MILP assignment can still act as a reasonable estimate to
the assignment problem when more complicated routing is required. Wherby more
complex problems such as routing through wind can feasibly be left for a post-process
after the assignment. Finally, intial results of this Chapter, specifically Section 2.6,
will be explored in greater depth, alongside additional case studies, in Chapter 5.
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Chapter 3

Wind-optimal Routing for
Formation Flight

3.1 Introduction

The work of Chapter 2 has laid out the main foundations and methodology for this
Thesis. For simplicity we assumed that flights would fly great circle paths, however
in reality flights alter their routes for a number of reasons, but notably to avoid wind.
It is therefore neccessary to observe the effect the assumption of using great circle
paths has on the routing and assignment stages of the formation flight problem.

In the presence of wind, aircraft will commonly need to deviate from a great circle
path [46]. Aircraft usually attempt to fly the path of least-time, avoiding areas of
large headwinds, opting for those with less resistance or even tailwinds. Flying a large
proportion of a flight with a reasonable tailwind, such as an east bound transatlantic
flight, can reduce flight times by as much as a few hours compared to their west bound
counterparts [101]. Due to this, North Atlantic Tracks (NATs) are published daily,
both to alleviate traffic and to account for areas of greater predictability in certain
weather patterns.

Research into optimal path planning and trajectory optimisation in the presence
of wind is broad, encompassing a number of techniques, including optimal control
[57, 68, 69, 72, 86], Markov decision processes [6] and genetic algorithms [41, 82]. It
is clear that a full trajectory optimisation (or a least a higher-fidelity solution) for
aircraft looking to fly in formation would likely be needed. However, the added
computational time required to compute trajectories would be significant.

The previously discussed geometric method of Chapter 2 does not take into ac-
count the almost certain likelihood of encountering wind. It is therefore beneficial to
see how well assignment based on geometric formations performs in the presence of
predictable wind. The method outlined is not intended to be a likely candidate for
routing on a global scale, rather it is designed to simply benchmark the fast geometric
approach.

The same methods as Chapter 2 will be used, to first route for all possible com-
binations of formations and then use the associated costs to optimally assign flights
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to formation pairings. The aim of this chapter will then be to assess, and ultimately
benchmark, the use of the geometric approach to calculate an ‘approximate cost’
for use within the assignment stage. It will be shown that by using the geometric
approach to obtain an assignment based on the appoximate geometric-cost of forma-
tions, will allow the more complex problem of routing through wind to be left as a
post-process. In turn significantly reducing computational time with relatively small
reductions to the overall savings.

3.2 Wind Routing Method

While weather is chaotic and difficult to accurately predict over longer periods of time,
short term ‘day-to-day’ weather forecasts are generally easier to predict. Aircraft
flight plans, chosen prior to take off account for a wide variety of both predictable
and unpredictable factors. This typically includes the use of weather forecasts to avoid
potentially adverse weather [90]. Changes to the weather during a flight can often
then be accounted for with en-route flight path adjustments and altitude changes [67].
For the work of this Chapter a number of assumptions to the wind routing problem
are made. Flights are fixed to a single flight level (altitude) where they will encounter
a single ‘layer’ of predicted wind remaining unchanged for all the flights at all times.

3.2.1 Generating Static Wind Fields

To generate wind fields, a set of evenly spaced geographical points is first generated
across the entire map. Each of these points are then assigned vectors with a random
direction a random (but bounded) magnitude. A 1-Dimensional interpolation, using
the Fast Fourier Tranform, is then applied between these points, both horizontally
and vertically, to remove noise and create a smooth vector field. The volatility of the
wind field can also be prescribed in order to produce ‘bumpier’ surfaces. The final
wind field is essentially a matrix of discrete sample points, each with corresponding
vector of given magnitude and direction, with the assumption that the wind at any
point in the space can be estimated via interpolation. Some example wind plots
for varying levels of volatility are shown in Figure 3.1; the colour corresponds to a
lateral movement from left to right, with green indicating tailwind and red indicating
headwind.

3.2.2 Routing Through Wind Fields

To route optimally for formations in the presence of wind, a numerical approach
must be used. In line with the approach of Chapter 2 a fixed proportional discount
factor is used to represent the fuel burn reduction when aircraft fly in formation. For
formation routing The formation path is broken down into five connected sections:
two solo legs from departure to the rendezvous; the formation leg between rendezvous
and break point; and two solo legs from the break point to the destinations. Each
of these five sections is determined by a finite number of variable way-points, each a
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(a) Low volatility (b) Medium volatility (c) High volatility

Figure 3.1: Random Wind fields for different levels of volatility

longitude and latitude location, interconnected by great circle paths, as depicted in
Figure 3.2. The five sections are then connected via the corresponding rendezvous
and break-away points (the grey points of Figure 3.2 which are also variable), the
combination of all these way-points simulates a formation route.

In order to cost the relative benefits of formation flight over flying solo, the solo
flights must also be routed through the wind. This is a similar process and is essen-
tially the same implementation but with only one path, the solo leg, and its one set
of variable way-points to optimise for.

Figure 3.2: Variable way points making up formation route

In order to account for the wind let us first define a simple relationship between
the aircraft motion through the air and the wind, as represented in Figure 3.3, often
referred to as the ‘wind-triangle’. The ground vector, VG, is the vector corresponding
to the aircraft movement over the ground; i.e. the ground track and ground speed.
The wind vector, VW, is then the vector representing the motion of the air; i.e. the
direction the wind is blowing to with a given wind speed. Finally the heading vector,
VH, represents the aircraft motion through the air; i.e. the heading and airspeed.
Finally, the angle, θ, between the ground vector and the wind vector is called the wind
angle. For this problem VG will be predefined by the path and speed we wish to fly,
therefore given the wind vector VW the problem is to find the necessary heading
vector VH required to match our desired ground vector VG.

For a given placement of the variable way-points the cost of the formation-path
connecting them is estimated numerically. Each way-point is fixed and further sample
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Figure 3.3: Wind-triangle and contributing vectors

points are generated via interpolation, the entire formation path is then just a list of
sample points. At each of these sample points the wind vector, VW, is calculated, i.e.
the direction and magnitude of the wind field at that point, while the ground vector,
VG, which corresponds to the desired speed and direction the aircraft is already
known. Therefore we have knowledge of two of the three components of the wind-
triangle of Figure 3.3 and can then calculate the third vector, the heading vector,
VH.

The contribution of the wind, contw, to the ground vector, VG, can be calculated
using the dot product and the corresponding property of scalar projection. The
amount the vector of wind, VW, adds to the ground vector, VG, is proportional to
the wind angle, θ, as follows

contw = ||VW|| cos(θ). (3.1)

Thus angles of θ (measured clockwise) between (−π/2, π/2) will increase the mag-
nitude (the speed) of VG (i.e. tailwind) and angles of θ between (π/2, 3 ∗ π/2) will
decrease the magnitude of VG (i.e. headwind). Therefore, to maintain the same
ground speed our heading vector, VH, must be adjusted.

The wind-triangle is essentially a vector equilibrium stating that

VG = VH + VW, (3.2)

or equivalently as we require the vector of heading

VH = VG −VW. (3.3)

Therefore as the ground vector, VG, and wind vector, VW, are known, the heading
vector is straighforward to caclulate. The airspeed the aircraft adjusts its throttle
setting for, is then the magnitude of VH which, given Equation (3.3) and vector law
of cosines can be calculated as follows

VH =VG −VW

||VH||2 =||VG −VW||2
=(VG −VW).(VG −VW)

=||VG||2 − ||VW||2 − 2||VG||||VW|| cos(θ)

VH =
√

(||VG||2 − ||VW||2 − 2||VG||||VW|| cos(θ)) (3.4)
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This is then incorporated into the cost function along with the proportional dis-
counting factor, as in Chapter 2, for the section of the flight flown in formation. The
contribution of the wind is therefore, for a given aircraft’s required ground velocity
VG, the cumulation of all the incremental wind contributions of all the sampled points.
It is important to note here that with tailwind aircraft can fly at lower speeds and
achieve additional fuel saving directly from this.

Therefore, given a formation pair and a predefined wind field, a numerical opti-
misation is used to alter the location of the variable way-points with the objective
of minimising the cost of the path. This optimisation is done using an ‘active-set’
method within Matlab’s ‘fmincon’ function. For each formation pair this takes around
30 seconds to find a suitable solution within a predefined threshold, which is signif-
cantly slower than the geometric approach which takes roughly 0.0005 seconds per
route. Due to the problem’s highly combinatorial nature, explored in Section 2.5.2,
of enumerating all combinations means solving for every possible pairings is time con-
suming. However, the enumeration process is ‘embarassingly’ parallelisable, and can
be split into a number of subproblems and run on a cluster of computers.

A total combination enumeration for an unrefined and relatively slow method of
optimising routes in the presence of wind is not ideal. It may, however be better
suited to a ‘post-process’ optimisation applied after an initial assignement is made
and thus for a significantly smaller number of formations. The focus of this Chapter
is to therefore assess if the assignment made, using the geometrically optimal routes,
would still act as a reasonable assignment in the presence of more complicated routing.

This completes the outline of the required methods for the wind routing problem.
In Section 3.3 an example formation route will be explored, showing a sample solution
path. A case study will then be presented in Section 3.4, looking at the same set of
transatlantic routes first outlined in Section 2.6. This will show the potential of using
the geometric method for the enumeration and assignment phase while leaving the
computationally expensive wind routing method to a post-process.

3.3 Example Formation

The North Atlantic Jet Stream (JS) has a major impact on aviation routing and
being a key area of potential for formation flight it is neccessary to use the jet stream
as an representational wind field. Although the method of Section 3.2.1 is essentially
random, the ‘randomness’ can be seeded in order to create predefined wind fields.
Thus this wind field is just a randomised wind field which has similar traits to the
north Atlantic jet stream.

For this example the two flights used are:

• Flight 1: Denver International Airport (DEN) to Frankfurt Airport (FRA)

• Flight 2: George Bush Intercontinental Airport (IAH) to Heathrow Airport
(LHR)

Routing numerically through the wind, using the methods of Section 3.2.2, results
in the routes depecited in Figures 3.4(a) and 3.4(b). The solid black lines are the
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wind optimal paths while the geometric route, using the methods of Chapter 2, are
the dashed blue lines. The solo paths of Figure 3.4(a) are clearly different with the
wind optimal route going considerably out of its way to avoid adverse wind. For the
formation paths, the two methods produce similar paths to the solo ones, with the two
flights rendezvousing at similar locations, but the wind optimal route clearly moves
toward the areas of tailwind. The wind optimal route for the formation achieves 5.4%
saving, compared to equivalent solo flights routed through wind. If there was no wind
and we simply flew the geometrically optimal route in ‘still-air’ then the formation
would achieve around 5.3%, compared to the equivalent solo flight. However, if we
flew the same geometrically optimal route through the static wind field then it would
burn 7.0% more fuel than the route optimised for wind.

Therefore it is clear, that in the presence of wind, it is neccessary to optimise the
route to take advantage of tailwind and avoid headwind. However, this has always
been expected, the aim of this chapter is to see how well the global assignment
performs in the presence of wind. With this in mind, the case study of Section 3.4
will be used to compare the two available routing and assignment methods.

3.4 Comparison of Methods: A Transatlantic Case

Study

The same list of flights for the Case Study of Chapter 2 is now reintroduced. The data
consists of 210 transatlantic flights between 26 US and 42 European airports. Again
the objective is to create formations of size two in order to minimize the total cost
(kg of fuel burnt) of the entire fleet. A fixed proportional discount factor, outlined in
Chapter 2, of 0.9 is used to account for the drag saving during formation.

3.4.1 Method

There will be two different routing methods used: Geometric Routing (GR), where
the route is calculated via the analytic methods of Chapter 2 and Wind Routing (WR)
where the route is calculated using the methods outlined in Section 3.2. Therefore
given that wind now has an impact on the formation and solo cost, the GR method
will only produce an approximate route and approximate cost for the wind-routing
problem.

The approach of this Chapter follows the same methods of Chapter 2 but instead
uses a three stage solution process:

• Enumeration: For all possible combinations calculate the routes and correspond-
ing costs.

• Assignment: Given the costs of all combinations, assign a final fleet of forma-
tions to fly in order to minimise total cost.

• Post-process: Calculate the optimal route for the assignment of formations.
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Figure 3.4: Wind Route vs Geometric Route
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The post-processing stage acts much like the enumeration stage, calculating the
routes and corresponding costs, however as it comes after the assignment stage it
is for significantly fewer flights. The idea being that if we can use an approximate
method for the enumeration stage, such as the geometric approach, the more complex
routing, such as wind-routing, can instead be added after the assignment stage, as a
post-process.

The use of the Geometric method has been motivated by the combinatorial na-
ture of the enumeration stage, calculating all combinations of formation flights. The
transatlantic case study contains 210 flights and therefore has 21, 945 different for-
mation combinations needing evaluation. The wind-routing method is essentially a
numerical optimisation of the placement of a finite set of variable way points and
as a result is not particularly fast. With a runtime of about 30 seconds per forma-
tion, enumerating all 21, 945 combinations requires about 180 of computational time.
Compared to taking a total roughly 4 seconds for all combinations for the GR there
is clearly a substantial difference. Therefore we aim to see if the enumeration and
assignment stage can be tackled by using only the GR, while the WR is left to the
post-processing stage.

3.4.2 Enumeration and Assignment Work-flow

The two workflows of Figures 3.5(a) and 3.5(b) outlines two different methods than
can be used to reach a solution for the wind routing and assignment problem. The
input consists of the list of all possible formation flights and we require the output to
be these flights allocated into formations and the associated wind costs. Given a list
of flights, all the combinations of making formations of size two are created. This list
is likely very large, compared to the flight list, as first outlined in Table 2.3.

For Method 1, shown in Figure 3.5(a), all formation combinations are routed
for wind then the costs of those routes are then assigned using the MILP, creating
our final solution. This Method will produce the optimal allocation of flights into
formations but as a result will take a substantial amount of cpu time.

Method 2, show in Figure 3.5(b), uses the geometric routing approach to calculate
routes for every combination of formation. As these do not take into account wind,
the costs can only act as estimates to the wind routing problem. The costs of the
geometric routes are then used within the MILP of the assignment stage to calculate
an assignment of flights into formations. The final stage, as the geometric routes and
the corresponding assignment are only estimates, requires the final allocation to then
be routed for wind, this is called the post-processing stage. Method 2 is a much faster
process than Method 1, but can only produces suboptimal allocations.

While Method 1 requires the wind-routing, which is relatively slow, to be used for
all possible pairings, due to the embarassingly parallelisable nature of running every
combination, to get results in a reasonable time the enumeration stage is split into
a number of smaller subproblems run on a computer cluster. The computationally
intensive work of this Chapter has been carried out on the University of Bristol’s
High Performance Computer (HPC) BlueCrystal Phase 2 [78]. Using the HPC does
not improve efficiency as the actual total runtime (i.e. cpu time) remains the same,
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Figure 3.5: Workflow Diagram of two methods for route calculation and assignment
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instead the time realised by the user (i.e. wall-clock time) required to produce the
results is more or less the total runtime divided by the number of subproblems it
is divided into. With that in mind the total cpu time for this is around 180 hours,
drastically more than a geometric wind-free solution. However this method is more
a proof of concept to benchmark the geometric results. Note that when referring to
time/runtime throughout this Section we will mean cpu time. Finally, one motivating
factor of looking at wind-routing is due to the weather phenomenom of the North
Atlantic Jet Stream (JS) present when flying transatlantic. For this case study, two
wind fields are presented. The first, used in Sections 3.4.3 and 3.4.4, has been created
to be representational of the jet stream over the Atlantic. The second wind field in
Section 3.4.5 has been made to represent ‘more-volatile’ wind, to see how the routing
and assignment is effected.

3.4.3 Jet-Stream West-to-East

The formation results travelling from West-to-East over the Atlantic, with a wind
field representational of the Jet-Stream, are now shown. Using the two methods
outlined in Section 3.2, to either apply the wind routing at the enumation stage or
the post-process stage.

By first routing all possible formations combinations for wind and then using those
cost to assign flights into formations pairs, as in Figure 3.5(a), results in a globally
optimal solution. The resulting assignment equates to a saving of roughly 9.48%,
against the corresponding solo flights routed through wind, and takes around 180
hours. This runtime break down as follows:

Enumeration: Solo 210 solo flights routed for wind: 10 minutes;

Enumeration: Formations 21,975 formation flights routed for wind: 180 hours;

Assingment MILP assignment: 4 seconds;

Post-Process None;

Total 180 hours.

A proportion of the saving achieved comes from cruising with a tailwind, so makes
any possible saving clearly dependent on the particular wind field used. The routes
of this solution is shown in Figure 3.6(b). Travelling West-to-East the green area
represents a tailwind, while the red area represents a headwind, the intensity of these
colours corresponds to the speed of the wind. What is clear from Figure 3.6(b)
is that the wind routes are not great-circle, rather they are funnelled through the
strong-green area over the Atlantic.

If instead, the enumeration stage is done using geometric routing and then using
these costs an assignment is made, as in Figure 3.5(b), the wind routing can be added
as a post-process on the substantially smaller list of routes (105 in this case). This
assignment is optimal when the metric is GC but under the metric of WC this assign-
ment is suboptimal. The resulting assignment, when routed through wind, achieves
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8.31% against solo flight, but takes significantly less time at around 60 minutes. This
runtime breaks down as follows:

Enumeration: Formations 21,975 formation flights routed geometrically: 10 sec-
onds;

Assignment MILP assignment: 4 seconds;

Post-Process: Solo 210 solo flights routed for wind: 10 minutes.

Post-Process: Formations 105 assigned formations routed for wind: 50 minutes.

Total 60 minutes

The geometric assignment routed through wind is plotted in Figure 3.6(c) and is
not too dissimilar to Figure 3.6(b). In fact only 14 formation pairs, roughly 13.33%,
remain the same between the two assignments. There are clearly a few formations
which are not ideal, such as the flight over Greenland, but as a first ‘estimate’ the
geometric assignment is fairly promising. In fact, it will shown in Section 3.5 that
the intial geometric solution can be further improved by as simple iterative process
at the cost of more computation time.

3.4.4 Jet-Stream East-to-West

Examining the results for the same set of flights for the same wind field but flights
now travel East-to-West. The globally optimal wind solution results in a saving of
8.67% against the corresponding solo flights through wind, taking roughly the same
time as Section 3.4.3. These routes are shown in Figure 3.7(b), while the wind field
is identical to that of Section 3.4.3, the green areas now act as headwinds travelling
westerly and red areas act as tailwinds. What is clear is that the formations look to
avoid those areas of large headwinds and aim to fly the regions of tailwind above and
below the green-area over the Atlantic. These are clearly distinctly different routes
from those of Figure 3.6(b), with the more southerly paths flying significantly away
from what would be the great circle path.

Again, if Method 2 is used, where the geometric routing is used for the enumeration
and assignment stage with the wind-routing added as a post-processed then this
results in a saving of 7.45%. Less than the global optimal, using Method 1, of 8.67%,
but a reasonable first estimate. The routes for the geometrically assigned formatons
are outlined in Figure 3.7(c) and is not too different from the global optimal of
Figure 3.7(b). Between the two assignments, only 8 (7.62%) of the formations remain
the same, showing that while the saving may be close, the actual allocation is almost
entirely different.

3.4.5 More-Volatile Wind

Finally now consider a much more volatile wind field where there are a greater number
of distinct areas of differing winds with a larger difference in peak values (up to
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Figure 3.6: Wind Routes for Jet-Stream West-to-East
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Figure 3.7: Wind Routes for Jet-Stream East-to-West
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WC Assignment GC Assignment
Wind Field Runtime Saving (%) Runtime Saving (%) Difference
JS - East 180 hrs 9.48 1 hr 8.31 1.17
JS - West 180 hrs 8.67 1 hr 7.45 1.22
Volatile 180 hrs 10.54 1 hr 9.22 1.32

Table 3.1: Case Study Saving Comparisons

300km/h in any direction). The aim of using this more-volatile wind field is to
observe what happens when the routes are heavily different from great circle paths.
The results of this section are for flights travelling West-to-East only.

Calculating routes for all possible formations through wind results in 10.54% sav-
ing against the corresponding solo flights. This saving is in fact greater than 10% due
to the strength of winds in some areas effectively multiplying the formation benefit.
The routes, plotted in Figure 3.8(b), are a little more erratic than the less-volatile
examples.

Using the geometric assignment provides a saving of 9.22%, again showing that the
geometric methods act as a reasonable estimate to the global solution. The resulting
paths, plotted in Figure 3.8(c), are similar to Figure 3.8(c) with only a few notable
differences. Again, while the routes look fairly similar the actual allocations only have
5, or roughly 4.76%, formation pairs in common.

3.4.6 Comparison of Results

Now the actual percentage savings are more heavily influenced by the particular
winds encountered. The amount of deviation, between savings for wind-optimal and
geometrically-optimal formation assignment are more important. Although it may
not attain a global optimum for a more realistic model, it allows the use of the fast
geometric approximation to estimate solutions to much larger problems in realistic
time-frames (some 200 times faster). Once a smaller solution set is determined it
can be post-processed to further improve the route to account for predictable wind
patterns.

3.5 Improving the Geometric Assignment in the

Presence of Wind

The aim of this Chapter is to benchmark the geometric method for routing and
assignment as a way of trying to counteract the combinatorial impact of needing to
looking at all formation combinations, whereby an approximate routing method can
be used to tackle the enumeration stage. The results of Section 3.4 show that the
geometric method does act as a reasonable estimate to the assignment problem in
the presence of wind. We now look to see if this initial estimate can be improved
to get results closer to the global optimal with wind without having to do all of the
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Figure 3.8: Wind Routes for Volatile wind field
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enumeration stage.
There are of course a number of different approaches that could be used to improve

upon our initial assignment. The aim of this section is not to find the best approach,
rather just show that it is possible to improve this assignment with a relatively small
amount of extra work, with the assumption that in future ‘smarter’ approaches can
be used. The method of this section will use the already known costs of formations
and solo paths to create an estimated cost for those combinations which are unknown.

3.5.1 Estimated Assignment Method

After completing the method of Section 3.2, using the geometric approach for the
inital enumeration and assignment stage, we have knowledge (i.e. we know the values)
of the following:

• The Geometric Cost of all 21,945 formation combinations

• The optimal geometric assignment (105 formations)

• The Wind Cost of the 105 assigned formations

• The Wind Cost of all 210 solo flights

To guarantee a globally optimal assignment using MILP for the wind routes, the
cost of all 21,945 formations would need to be known. As Section 3.4 has shown,
to calculate all these routes would require a significant amount of computation time.
Instead, using the currently known values we look to improve the initial assignment.

The main obstacle this problem has is that in order to learn the value of another
formation combination it needs to be routed through the wind, at a cost of around
30 seconds. Therefore, the number of extra route calculations needs to be kept low
enough to allow a solution in reasonable time whilst learning enough of the other
values to improve the current assignment.

To achieve this an ‘Estimated Assignment Method’ (EAM) is implemented to
assign formations based on estimated formation costs. Firstly a cost-estimating func-
tion must be defined, recalling the notation for Wind Cost, WC, and Geometric Cost,
GC, for a formation pair consisting of two flights, A and B, then the cost-estimating
function is as follows

F(A,B) = (WCsolo(A,B))×
(
GCform(A,B)

GCsolo(A,B)

)
. (3.5)

This estimating function takes the sum of the costs of the two solo wind routes
and applies the same saving that is achieved by the geometric routes. The assumption
being, that if the solo costs increase/decrease due to the wind routing so too will the
formation routes. This is a fairly simplistic estimating function, which could easily
been improved or even ‘trained’ as we learn more about the solutions, however this
is beyond the scope of this Thesis.

With the cost-estimating function in place the main idea of the Estimated Assign-
ment Method will be as follows:
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WO GO GO+EAM
Wind Field Saving Time Saving Time Saving Time
JS - East 9.48% 180 hrs 8.31% 1 hr 9.28% 17 hrs
JS - West 8.67% 180 hrs 7.45% 1 hr 8.43% 38 hrs
Volatile 10.54% 180 hrs 9.22% 1 hr 10.04% 12 hrs

Table 3.2: Case Study Results: Comparison of Three Assignment Methods and their
corresponding saving and cpu time

1. Create a list of costs used for the assignment stage. Made up of both the cur-
rently known formation costs and a number of estimated costs (Equation (3.5))
for each of the unknown values.

2. The MILP is run for these mixed-costs.

3. If the assignment made use of any formation which only has an estimated cost,
those cost must be properly evaluated for wind and the cost list is updated.

4. If the cost list has changed go to step 2, otherwise we are finished.

This process of estimating and assigning is then simply iterated over until either
the list of costs no longer changes (i.e. all assigned formation costs are known) or
until some timing constraint is met. This is a fairly simple approach but allows us to
improve the intial assignment without having to enumerate all the combinations for
wind. Therefore given an cost-estimating function and a total allowable enumeration
time this algorithm can be run.

3.5.2 Results of using an Estimated Assignment Method

The method outlined in Section 3.5.1 is now applied to the three case study examples
of Section 3.4. While each of the case studies has a different set of solutions, the
Jet-Stream West-to-East shares the same geometric costs and geometric assignment
as the Volatile wind-field West-to-East.

We assume that the computational-cost of calculating a wind-route is 30 seconds
per formation. Then for each iteration of the assignment loop the amount of added
solution time is the sum of the time it takes to run the MILP plus 30 seconds for every
estimated cost that needs a WC. Running the MILP is fast relative to the time it
takes to calculate the WC for a formation and usually only requires 2-3 seconds each
time. Therefore the majority of the computation time is down to the number of new
WC needing evaluation. For these case studies the method is allowed to run up until
the total calculation time exceeds 2500 minutes, around 1/4 of total enumeration.
While this is still around 41 hours, it is equivalent to about 5000 WC calculations
against 21,975 for the total enumeration. This duration obviously also scales with
the runtime of the wind routing, and improved wind-routing method would in turn
reduce this computation time.
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Wind Field WO GO GO+EAM
JS - East 105 (100%) 14 (13.33%) 43 (40.95%)
JS - West 105 (100%) 8 (7.62%) 34 (32.38%)
Volatile 105 (100%) 5 (4.76%) 15 (14.29%)

Table 3.3: Case Study Results: Comparison of Three Assignment Methods and the
number of formations matching the globally-optimal assignment

The results of running the iterative assignment loop for each of the case studies
is outlined in Table 3.2, showing very promising results. As shown in Figure 3.9
each solution begins at the assignment cost estimated by the Geometric approach
and gradually improves as more wind routes are evaluated. The currently best found
assignment cost is plotted against the computation time required. As the algorithm
progresses more wind costs are ‘learned’ and the MILP can get closer to the global
optimal assignment. None of the cases use all the alotted time and all finish when the
current assignment can no longer be improved by using any of the estimated values.

The Jet-Stream West-to-East results, discussed in Section 3.4.3, begin with an
intial estimated assignment saving of 8.31%. As shown in Figure 3.9(a) and Table 3.2
the estimated assignment method proves to be very helpful in improving the assign-
ment solution in the presence of wind, reaching an assignment with a saving of 9.28%,
which is a percentile difference of just 0.20 away from the global optimal. Getting to
this assignment would however require 17 hours of computation time (this includes
the 1 hour for the initial GO assignment), but is significantly faster than the full
enumeration. There were 204 iterations of the EAM to reach this solution taking 6
minutes, which is negligible relative to the time required to calculate the wind routes.
What can also be seen from Table 3.3, is that the final estimated assignment only con-
tains 43 , roughly 40.95%, of the same formations as the global-optimum. This shows
that while the two assignments costs are relatively close, there is still a reasonable
amount of difference between them.

The East-to-West result (Figure 3.9(b))), starts at an intial assignment of 7.45%
and gradually improves until its final solution of around 8.43%. This takes almost
twice as long as the West-to-East at around 38 hours but is still significantly faster
than the full enumeration. For around one fifth of the computation time you can
get to within 0.24 percentile difference of the global solution. The EAM required
688 iterations to obtain this solution, which is clearly many more than the West-
to-East, taking a total of 25 minutes. Furthermore on average each iteration took
slightly longer than the West-to-East case. This indicates that the problem the MILP
was solving each time was ‘harder’, typically this is a result of a ‘bumpier’ solution
space with many local minima. Finally, the number of formations which are the same
between the estimated assignment and the global-optimum, from Table 3.3, is 34
(32.38%).

The West-to-East volatile wind solutions shown in Figure 3.9(c) settles to a solu-
tion faster than the other two cases. Starting from the intial assignment saving on
9.22% and within 12 hours reaches a saving of 10.04%. Being within 0.50 of a per-
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Figure 3.9: Estimated Assignment Solutions
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Figure 3.10: Estimated Assignment Method’s addition of Wind Costs

centile from the global optimal is still a greatly improved result, but of the three case
studies it has the biggest difference. This could be due in part to it settling quick-
est, after 12 hours and 123 iterations, resulting in the equivalent of getting stuck in a
local-minimum. The resulting estimated assignment only has 15 (14.29%) in common
with the global assignment, again showing some way to go until the global assignment
is reached.

There is a clear trade-off between the saving achievable and the time required
to reach the solution. At one end there is the full enumeration, taking around 180
hours but resulting in the maximum amount of saving possible. At the other end
there is the initial assignment, provided by the geometric method with wind routing
added as a post-process, taking around 1 hr. While inbetween there is a reasonably
steady progression from the geometric intial estimate towards the global optimum.
The values depicted in Figures 3.10(a) and 3.10(b) compares the number of iterations
of the Estimated Assignment method versus the number of additional Wind Cost
calculations required. What can be seen is that during the first few iterations lots of
estimated costs are chosen and so lots of WC need to be evaluated. Many of these will
correspond to formations which save a lot and stand out against other possibilities,
while some will be those with lower savings that are a result of moving around other
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flights within the assignment. The number of addition WCs needed per iteration then
gradually decreases until no changes are made and the process stops.

Due to the heuristic nature of the estimated assignment method no level of so-
lution improvement can be guaranteed. However, the results presented show a clear
indication that an intial assignment can be readily improved. The cost estimating
function, such as Equation (3.5), plays a key role in the performance of the Estimated
Assignment Method. A function which over estimates the costs (i.e. predicts larger
values) will mean less movement from the original assignment as there will be less
incentive for the MILP to choose other formations. Conversely, under estimating the
costs will result in the estimated assignment method choosing lots of the estimated
costs due to them being lower. Choosing many new estimated solutions requires the
algorithm to then go an calculate the wind cost, which results a longer runtime. Tun-
ing heuristic algorithms, such as this, is a large area of research in itself and work
into improving the EAM could be useful. However, the results of this Section show
that even with a fairly simplistic estimator function significant improvements to the
initial assignment can be made.

3.6 Summary

This Chapter has investigated the impact of wind on the problem of routing for for-
mation flight and how well the geometric assignment method performs as an estimate
to the global solution.

Firstly a numerical method for optimal formation routing in the presence of a
static wind field is presented. The wind routing method involves using a number
of variable way-points to estimate the flight paths for two aircraft looking to join
in formation. The way points are optimally chosen using an active-set optimisation
within matlab and provide a reasonable method for formation routing in the presence
of wind. The aim of the method was to provide fairly simple routing when more-
analytic approaches are unsuitable.

The implementation of the Geometric method has been motivated by the combi-
natorial nature of enumerating all combinations for formation flights. The numerical
nature of the wind-routing method means it is not particularly fast. With a runtime
of about 30 seconds per formation, enumerating all combinations requires significant
computational time. The core aim of this Chapter has been to benchmark the geomet-
ric method, outlined in Chapter 2, to see if the enumeration and assignment stage can
be achieved using only the geometric method, while the more complex wind routing
is left to a post-process.

With this in mind two seperate work-flows were presented for assigning aircraft
into formation fleets in the presence of wind. The first, requires the calculation of the
cost of the wind route for all combinations, followed by a MILP assignment. This pro-
duces a globally optimal solution but is a significantly more computationally intensive
process. The second approach is to use the fast geometric method to estimate the
highly-combinatorial assignment process and then simply calculate the wind-routes
as a post process.
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The two approaches were compared in Section 3.4 using the Transatlantic case
study for three different wind routing problems. The results showed that the geomet-
ric approach produces an assignment which performs very well, around a 1 percentile
difference from the global optimal, for a radical reduction in the required computation
time.

An Estimated Assignment Method for improving this intial assignment was also
introduced in Section 3.5. Here an cost-estimating function was used to try to estimate
the wind-cost of formation routes, yet to be calculated, using only the knowledge of the
solo wind-cost and the saving achieved using the geometric method. The assignment
stage became an iterative process making optimal assignments based on a mixture of
known and estimated costs. If an assigned formation only had an estimated cost then
the wind cost was then calculated, the costs updated and the MILP was re-run. This
method therefore allowed the improvement of the intial assignment in exchange for
additional computation time. The results of the Estimated Assignment Method were
extremely promising, creating assignments which differed from the global solution by
as little as 0.2 of a percent while taking significantly less computation time.

The benchmarking results of this Chapter show that the Geometric Approach
proves a very reasonable estimate to the global assignment problem. This essentially
counteracts the large combinatorial impact of enumerating all combinations of forma-
tions. Therefore, more computationally challenging routing, such as the wind routing
method of this Chapter, could feasibly be left for a post-process stage.
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Chapter 4

Mitigating The Impact of Ground
Delay on Formation Flight

4.1 Introduction

The core routing approach of this thesis has been that of time-free solutions, whereby
take-off and landing times should be chosen to adhere to the optimal formation route.
However, once these are set, it is clear that any rendezvous would need to be carefully
timed and coordinated. Therefore the impact delay could have on such an operation
is of major interest.

Delays were estimated to cost the European airline industry 1.25 billion Euros
in 2010 [29], with weather and airport operations contributing significantly. Such
delays will always be a possibility and any commercial flight is at risk from being
affected. However, when trying to design rendezvous operations such as formation
flight, timing becomes a significant factor.

With many commercial aircraft flying between 300-450 knots during cruise, miss-
ing the rendezvous location by a minute can mean spatially missing it by 10-15 km.
Therefore as the level of delay increases the potential fuel saving from formation flight
decreases. If the aircraft simply ‘waits’ at the formation point, flying a holding pat-
tern, it will burn through any savings. Similarly, if the aircraft continues along its
path alone, the distance required to ‘catch-up’ and rejoin formation will also increase.
Any such catch-up manoeuvre will cause loss of performance compared to the ideal
formation flight. The combination of this speed change along with the section of the
formation fuel saving ‘lost’ means that any attempt to regain formation needs to be
carefully costed and weighed against other possible solutions.

Delay can occur at any stage of the flight for a number of reasons. A significant
proportion however, occurs at the airport (due to factors such as airport congestion
[55]) known as ground delay. For the purpose of this chapter, we assume that the take-
off time is uncertain but that all subsequent operations are perfect. The approach
taken could potentially extend to uncertainty in en-route flight such as turbulence,
but this is left for future work. The main focus of this work is therefore addressing
the impact of a delay in take-off has on other formation members.
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Table 4.1: Example r and p values for four US airports

Airport Early Late
IATA r p r p
ATL 3.371 0.478 0.858 0.029
BOS 2.702 0.365 0.755 0.024
MIA 2.372 0.349 0.751 0.025
PDX 2.187 0.319 0.573 0.017

Formation routes are first calculated using the methods of Chapter 1. The routes
are spatially considered to be fixed, thus once an aircraft commits to a formation it
must fly the geographical route regardless. Furthermore, formations of two aircraft
are used while assuming a constant fuel burn discount of 10% during formation [18,
19, 60, 63]. The concept presented could also extend to formations of more than two
aircraft, with an added dimension for each additional aircraft, however this would
also cause increases in computation time.

This chapter will compare two different approaches to handling ground delay.
Firstly a simple holding pattern approach is modelled, whereby one flight ‘waits’ at
the rendezvous location by entering a holding pattern until the other arrives. The
second method is to use a state space approach, using dynamic programming to
calculate optimal policies for any possible realisation of delay. The idea being that
the first approach will act as a benchmark for how well the second approach performs.

4.2 Probability Density Functions of Airport De-

lay

In order to calculate the probabilities of a particular delay occurring Probability
Density Functions (PDFs) have been fitted to historical data [1]. The set of US
airports used within the Transatlantic case study of Section 2.6 was chosen and the
scheduled and actual take-off times were recorded for the month of October 2013.
Discrete Negative Binomial Distributions (NBDs) were chosen as a reasonable fit, to
the data (given more data, better statistical models could also be used).

4.2.1 Negative Binomial Distributions

Given a succession of independent Bernoulli trials, each having a probability of success
p and probability of failure 1−p, then the number of trials needed in order to observe
a given number r of successes defines a NBD. For some r and p the NBD is then
defined as

f(k|r, p) ≡ P(X = k) =
Γ(r + k)

Γ(r)Γ(k + 1)
(1− p)rpk,
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Figure 4.1: Negative Binomial Distribution Fits to Real Delay Data

for k ∈ N0, where Γ(x) =

∫ ∞
0

e−ttx−1dt. (4.1)

The Gamma function Γ(x) is an interpolation of the binomial coefficients, allowing
for non-integer values of r (Table 4.1 gives some typical r values).

4.2.2 Modelling Airport Ground Delay

Some aircraft may also take-off early (early-delay), but not to the same extent, in fact
it is common for aircraft to take-off between 0-15 minutes early. The distribution of
this early-delay can also be modelled with a NBD, however it usually has a slightly
different form to that of ‘late-delay’. The resulting final PDF is therefore the normal-
ized combination of two NBDs producing an asymmetric curve peaking at 0 minutes
(scheduled time) and rapidly decreasing at either side. The majority of the proba-
bility of take-off lies, as you might expect, within 30 minutes either side of scheduled
take-off time, however it is not uncommon for aircraft to be delayed upwards of 60
minutes.

Table 4.1 contains example r and p values used for the four US airports: Hartsfield-
Jackson Atlanta International (ATL); Boston Logan International (BOS); Miami In-
ternational (MIA); and Portland International (PDX). The corresponding NBDs are
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plotted (between -60 and 120 minutes) in Figure 4.1 for time difference tD in minutes
of observed take-off time against scheduled take-off time for tD ∈ [−60, 120]. As the
NBD is a discrete PDF, each point on the graph then represents the probability of
take-off occurring within the corresponding minute interval. What can be seen is that
all the distributions can be reasonably characterised by the use of a two-sided NBD,
however it is not an exact match with the NBD fit has a tendency to overshoot at
the peak.

4.3 Holding Pattern Approach

One way to try and cope with the effect of ground delay on a formation is for the first
aircraft arriving at the rendezvous location to simply wait for the later aircraft, as
shown in Figure 4.2. The first aircraft takes off and flies to the predefined rendezvous
location (Figure 4.2(b)). If the other aircraft is delayed, then the first aircraft performs
a holding pattern and waits for the other to arrive. Once the other aircraft reaches
the rendezvous point, Figure 4.2(c), then they enter a formation continuing for the
whole of the formation leg (Figure 4.2(d)).

This is a somewhat naive approach as it is entirely reactive to any delay. A minute
of delay will then be absorbed as the cost of the aircraft flying in a holding pattern
speed for 1 minute. This seems like a reasonable approach when encountering small
delays (< 15 minutes), but as the delay increases so too does the cost to the holding
aircraft and could results in significant losses.

F1

F2

(a) Both flights on the ground (b) F1 is ahead of F2 so enters holding
pattern

(c) F2 arrives at rendezvous (d) Both continue in formation

Figure 4.2: Geographical Representation of the Hold Approach

Very roughly speaking for two 8 hour flights joining in formation and saving
10% (the theoretical maximum from Table 2.1) each would equate to 48 minutes of
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additional flight time at cruise per aircraft. Therefore at the limit (ignoring additional
fuel weights) one flight holding could tolerate up to about 96 minutes of delay until
the entire formation would just break-even. However, if the other aircraft was delayed
more, then the entire formation would start to cost more than the corresponding solo
flights. Further still if some cutoff was set, so that a flight could only hold for a
maximum of say 90 minutes before it had to continue on, then if the other flight was
delayed 91 minutes the entire formation would never get the savings from formation
flight and end up instead costing 10% more than just flying solo. Due to this, and
as aircraft realistically should not spend hours holding, it is clear some cutoff time
needs to be set.

4.3.1 Holding Pattern Cutoff Time

The cutoff choice will be an important factor in the overall performance of the forma-
tions. If the cutoff is too low only a few flights will achieve formation, and therefore
any saving, while all the others will incur the cost of holding, receive no formation
saving and cost more than solo flight. Conversely if the cutoff is set too high, while
lots of flights will achieve formation (with mixed savings corresponding to the level
of delay), some will achieve huge penalties for holding and thus incur large losses.
Furthermore this does not take into account the knock on effects of greatly increased
flight times.

For a given cutoff time tco and delay tdel the total cost is:

Total Cost =

{
Cost(Holding for tdel)+ Cost(Formation) if tdel ≤ tco

Cost(Holding for tco) + Cost(Solo) if tdel > tco
(4.2)

This kind of cost function produces a discontinuous jump in the cost as the level
of delay exceeds the cutoff time (an example of this is shown in Figure 4.3)

Realistically each flight of each formation would have a distinct cutoff time as-
signed, individually tailored to suit each particular aircraft and formation scenario.
However for simplicity and clarity of results is it assumed that a single cutoff time
will apply to all flights wishing to join a formation.

4.3.2 Example Formation

To illustrate the Hold approach, take as an example a formation between the two
flights:

• Flight 1: Los Angeles International Airport (LAX) to London Heathrow Airport
(LHR)

• Flight 2: Phoenix Sky Harbor International Airport (PHX) to London Heathrow
Airport (LHR)
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Figure 4.3: Example Saving for all possible relative delays between Flight 1 and Flight
2 for different cutoff levels

An exploration of what the cost function looks like for a variety of cutoff times
for this sample flight is shown in Figure 4.3. The horizontal axis depicts the relative
delay between the two flights, Flight 1 and Flight 2. That is, the difference in time
of Flight 1 arriving at the rendezvous location and Flight 2 arriving, i.e. a negative
value indicates Flight 2 arrives after Flight 1. The y-axis is then the fuel saving
corresponding to such a delay. As the relative delay moves from 0, the fuel saving
percentage gradually decreases until the cutoff time is reached, at which point it
switches to a much lower, negative saving.

The likelihood of the relative delay lying within a given cutoff time, shown in
Figure 4.4(a), is the cumulation of both airport’s PDFs (from Section 4.2). Although
this probability tends to 1 as tco increases, this probability has to be weighted against
the risk of also making huge losses. In this example, even with a cutoff time of 60
minutes, there is still roughly a 10% chance of being outside it.

The results for varying cutoff times tco are plotted in Figure 4.4(b). There are three
different values plotted: the probabilistic expected saving; the best possible saving
achievable; and the worst possible saving achievable. As the cutoff time increases,
the likelihood of both aircraft taking off within that window also increases as shown
in Figure 4.4(a). The result of the potential savings are interesting as increasing the
cutoff time forever improves the expected saving at the expense of forever decreasing
the ‘worst case’ saving. The reason for this increase to expected cost is that the
expected cost is essentially the multiplication of Figures 4.3 and 4.4(a). The cost
function of Equation (4.2) is piecewise linear with the cost of no formation being a
significant jump. As the cutoff increases the probability of the aircraft being outside
the cutoff window approaches zero. As a result the impact of jumping to the much
worse cost has on the overall cost diminishes as tco increases.
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The cutoff time though, in reality, would most likely be determined by external
factors such as regulatory considerations (e.g. divert rules). One could realistically
imagine cutoff times of anywhere up to about 60 minutes. The Hold Approach is
now fully defined, the results of applying this approach to a case study will be shown
in Section 4.10.1. A State Space approach will now be introduced as an alternative
way of handling ground delay. The two methods will be compared in Section 4.10.3,
whereby it will be shown that the State Space approach is far superior.

4.4 A State Space Approach

An alternative approach to a simple hold pattern is to model the problem using
state-spaces and two types of Dynamic Programming (DP) which are then solved
using value iteration. Dynamic Programming (DP) is used to solve the deterministic
region of the flight (i.e. when all aircraft have taken off). Then through Stochastic
Dynamic Programming (SDP) [12] the uncertainty of ground delay is assessed via the
assignment of optimal speed-policies, defining what speed airbourne aircraft should
fly, for any possible realization of delay. Finally the results of a case study of 210
transatlantic flights are compared and the results discussed.

F1

F2

(a) Both flights on the ground (b) F1 is ahead of F2 so decide to meet
later on: F1 slows down, F2 speeds up

(c) Both rendezvous at newly agreed lo-
cation

(d) Both continue in formation

Figure 4.5: Geographical Representation of the State Space Approach

This approach differs from the Hold Policy approach of Section 4.3, shown in
Figure 4.2, as airbourne aircraft will continue along their route flying at the speed
determined by the approach outlined in this section. A geographical example of what
happens during this approach is shown in Figure 4.5. The first flight to take off
continues along its route until the other is delay. If no delay occurs then they will
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Flight 1

Flight 2

x1

x2

Figure 4.6: The two deterministic state variables x1 and x2

meet at the normal rendezvous location. However if one flight is delayed then the
other flight will continue along its route until the other aircraft takes off. As soon
as both aircraft are airbourne a new rendezvous location is calculated, the circle in
Figure 4.5(b), which minimises the total fuel burn. The flight in front would slow
down, to wait, while the flight which is behind would speed up in order to ‘catch
up’. The two flights then rendezvous at the new location, Figure 4.2(c), and fly in
formation for the rest of the formation leg (Figure 4.2(d)).

4.4.1 Formation and Non-Formation States

Fixing the geographical route removes the dimensions of varying the longitude and
latitude locations. Instead only the current distance each aircraft has flown along
its own path is varied. The location of each aircraft is therefore reduced to being
implicitly defined by a one-dimension state variable. For the two aircraft formation
case, where a Flight F1 and a Flight F2 take-off from two distinct airports. We are
said to be in a state (x1, x2) ∈ S if Flight F1 and Flight F2 are x1 and x2 km along
their respective paths (as in Figure 4.6). The specific longitudes and latitudes can
simply be recovered from the already defined route.

A subspace SF ⊆ S, the formation section, is defined to be the possible states that
result in both aircraft being at the same geographical location and can therefore fly in
formation (The diagonal line in Figure 4.7). A solution can transition from the non-
formation state S to the formation state SF and begin to receive the fuel-reduction
benefits of formation flight.

The final state space is also discretized into a number of sample grid points, each
of which will need to evaluated and costed.

4.4.2 Moving Through the State Space

A graphical representation of this space is shown in Figure 4.7. From any point in this
space, a positive horizontal movement means Flight F1 has moved along its trajectory
and a positive vertical movement means Flight F2 has moved along its trajectory. Any
other movement, is a combination of the two, and so both are travelling along their
paths at some given speed. The dynamics of moving through the state space can be
defined as:

ẋ1 = V1

ẋ2 = V2

(4.3)
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Figure 4.7: State Space representation of a formation route and corresponding regions

Assuming no time constraints, during solo flight each aircraft will fly at its best
speed (i.e. the speed that minimizes its total fuel burn). The ratio of the aircrafts’
solo-speeds describe a single nominal solo-gradient to move through the state-space.
Therefore if it is decided that the aircraft should fly solo, then the path through the
state-space will attempt to closely follow this gradient.

If an aircraft misses their rendezvous (and so are not yet in formation) then this
implies one of the aircraft is further along the route than the other. Thus if one
aircraft is ahead, by adjusting the speeds (a decrease for the aircraft that is ahead
and an increase for the aircraft behind) a ‘catch-up’ is performed and the formation
joins at a later time (as outlined in Figure 4.8).

For any given state one can also define a reachable region, which are the future
states which can be realistically reached through the ratio of possible velocities each
aircraft can fly. These are defined by the gradients mA = V1min

V2max
and mB = V1max

V2min
and

are the extremes of the aircraft speeds. The two lines defined by the two gradients
mA and mB along with the current state (x1, x2) define this region,

R(x1, x2) = {(x′1, x′2) : mA ≥
x′2 − x2

x′1 − x1

≥ mB}. (4.4)

The shape of this region will be defined by the relative efficiencies of each aircraft.
In principle this region extends infinitely, however it is only necessary to look a small
amount ahead.

The cost of reaching any point in this space will vary with the aircrafts’ velocities.
Given the current state and a chosen next state will define a single gradient m, relating
the two aircraft velocities V1 and V2, of flight F1 and flight F2 respectively. In order
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Figure 4.8: Solution example with delay. Between 1 and 2 F2 flies the SDP policy as
F1 is delayed. Between 2 and 3 both aircraft fly the DP policy, to meet at 3 and fly
in formation until 4 where the break and fly solo.

to successfully get to the next state the relationship V1 = m × V2 must be satisfied.
Importantly, this relationship dictates the ratio but not the individual speeds. For
example if m = 1.1, then as long as F1 flies 10% faster than F2 then they will meet
at the desired next state. Therefore, since each speed can be defined as a function
of the other i.e. V2 = f(V1) (and similarly V1 = f(V2)) to find the optimal pair of
speeds, it suffices to simply minimise for one. A one dimensional search over V1 (or
analogously V2) can therefore find the optimal pair of speeds, which satisfies the ratio
m and minimizes the total cost. As a result it is possible to calculate the minimum
cost to get between all possible reachable states, along with the corresponding speeds.

An example walk-through of a possible movement through the state-space is shown
in Figure 4.8. The deterministic DP and the Stochastic DP have first been solved
and we are following the resulting polices. The solution starts at point 1, when both
aircraft are on the ground, and as flight F2 takes off we begin to move along x2.
Throughout the time F2 is airbourne and F1 is still on the ground, the problem is
uncertain and the solution to the SDP will provide the policy for F2 to follow until F1

eventually takes off. This optimal speed-policy will be followed until flight F1 takes
off at point 2 and the level of delay will be fully realised. From this point on the
problem is deterministic and the solution policy calculated by the DP will be used.
The DP policy tells flight F2 to slow down, to try and wait, and tells flight F1 to
speed up. Given this speed change policy, the aircraft should eventually rendezvous
at point 3, about half way along the formation leg of the journey, and continue in
formation until they break away at point 4. Therefore, the relative increase in cost
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from F1 flying faster and F2 flying slower has been counteracted by the fuel saving
achieved by flying in formation, albeit for less than the scheduled amount.

With this in mind, for any level of delay, the aim of using the DP policies is to
optimally control movements from point 2, when the delay is realised, onwards. The
aim of the SDP is to optimally control the speed of the airbourne aircraft between
points 1 and 2. The following sections explore the use of Value Iteration and Dynamic
Programming (DP) to find solutions for optimally moving through this state-space.
Specifically, Section 4.5 will outline the use of DP for solving the deterministic prob-
lem, while Section 4.7 will outline the use of a stochastic DP for solving the stochastic
problem.

4.4.3 Deterministic and Stochastic Regions of the State Space

One key assumption made in this Chapter is that uncertainty is isolated to take-off
times. Therefore the state-space approach outlined can be thought to be comprised of
two main regions. The boundaries of the state-space, i.e. when x1 = 0 or x2 = 0, are
the areas where one of the aircraft has yet to take off, so uncertainty exists and will be
require stochastic methods to solve. Conversely, once both aircraft are in the air there
is no longer any uncertainty and the problem is deterministic. The interior i.e. when
x1, x2 > 0, defines the deterministic region, with no uncertainty and so deterministic
methods can be used. Therefore with this in mind the entire state-space can be split
into two subsets:

S = {(x1, x2) : x1, x2 > 0}, (4.5)

Ŝ = {(x1, 0)} ∪ {(0, x2)},∀x1, x2. (4.6)

This results in two connected sub-regions and corresponding sub-problems. The
deterministic region, S, will be solved in 4.5 using deterministic Dynamic Program-
ming (DP). The stochastic region, Ŝ, will be solved in 4.7 and will require the use of
a Stochastic DP (SDP). It is necessary to solve the for the deterministic region, S,
first, as its solutions will act as a cost-to-go for the stochastic problem.

It is useful to note here that the use of a DP for the interior of this state-space
is not entirely necessary and other, continuous methods can be used. However this
work chooses to use a DP approach to develop a framework which in future could
also include the effects of uncertainty en route (for example risks of adverse weather
at certain locations).

4.5 The Deterministic Problem: Both Flights Air-

bourne

To solve the deterministic side of the problem, i.e. when both aircraft have taken off
and there is no longer an uncertainty, we can use Dynamic Programming. The prin-
ciple of Dynamic Programming (DP) is to reduce a complex problem into a sequence
of smaller, simpler, subproblems, working backwards from an end goal to starting
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point. Thus, if it is known how to get optimally from a state n−1 to the final state n
then you need only work out how to optimally get from n− 2 to n− 1. The starting
point can then be reached by recursively working backwards through all the states to
arrive at a final solution.

This chapter uses the method of Value Iteration, often used in reinforcement
learning [9], to solve the DP problem. Starting from the final state and working
backwards, at each new state the ‘cost-to-go’ to all reachable states is calculated.
The best course of action is then decided, for example choosing the next state based
on a minimal cost. By working backwards (backwards induction) each new state will
be assigned a best cost and best action to take based on the previously calculated
costs.

4.5.1 Problem Formulation

For the deterministic formation flight problem the state s defines how far along each
aircraft is along its path, the entire state-space

S ⊆ (0, x1max]× (0, x2max], (4.7)

consists of the finite set of all these possible discrete states s. The control u ∈ U is
then the decision of what speed the aircraft should fly until the next state s′ = u(s).
The finite set of all applicable controls

U = [0, V1max ]× [0, V2max], (4.8)

is assigned a reachability function Ur(s) : S → S, where Ur(s) is the set of all controls
which can be applied at the state s, that is, all the possible speeds which the aircraft
can fly. The possible choices of control u ∈ Ur are therefore defined by the reachability
region R of Equation (4.4). The cost function C : S × U → R+ is the cost C(s, u) of
executing a given control u at a given state s. That is, the fuel the aircraft burn by
applying u(s) and moving from state s to s′.

Therefore, at each step the system is at a distinct state s ∈ S and can follow out
any applicable action u ∈ Ur(s) ⊆ U for a cost C(s, u). A policy, π : S → U , is then
defined as a mapping from the state-space S to the space of actions U , describing
which action to take at each state s to get to the next state s′. That is, a policy
defines the speeds the aircraft should fly for any given state.

Finally, for a given goal state G (i.e. when both aircraft have landed) and an
initial state s0 a solution is obtained by finding the policy π ∈ Π which is optimal,
denoted π∗. This optimal policy, will be the speed choice which minimises the total
fuel.

An example of a possible solution from a state s ∈ S is shown in Figure 4.8 where
the current state, s, is point 2. The deterministic problem only applies between the
points 2−4 (i.e when both aircraft have taken off). At point 2 flight F1 and F2 apply
the control u to fly the best speeds to meet at 3. Then a formation is made and flown
between 3 and 4. The path between point 1 and 2 is stochastic and will be covered
in Section 4.7.
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How well a policy π performs is based on the cost-to-go function J :

Jπ(s) = C(s, π(s)) +
∑
s′∈S

Jπ(s′), (4.9)

defined as the cost to reach the next state s′, by following the policy π(s) = s′ plus
the (already calculated) cost to finish from s′. Finally, for any policy to be optimal
it must satisfy the Bellman equations [12],

J∗(s) = 0 if s ∈ G, otherwise,

J∗(s) = min
u∈U(s)

[
C(s, u) +

∑
s′∈S

J∗(s′)

]
.

(4.10)

The corresponding optimal policy π∗(s) at a state s can then be deduced from
Equation (4.9) by choosing the sequence of controls u1, u2, . . . , uk such that Jπ(s)
is minimized. This optimal policy, therefore contains the set of speeds the aircraft
should fly for all possible states to minimise the total cost.

4.5.2 Value Iteration

With this in place, Value Iteration is used to solve the Dynamic Programming prob-
lem. The concept (first introduced by Bellman [11]) involves an initialized value
function (usually zero) which is then iteratively updated with the best currently-
found value as the algorithm progresses. That is, at each state s encountered, the
minimal value

J(s)← min
u∈Ur(s)

[C(s, a) +
∑
s′∈S

J(s′)], (4.11)

is assigned to the value function for that state to create successively better solutions.
Therefore the Value Iteration algorithm starts at a final state and iterates backwards
until a sufficient solution is found.

4.6 Sampling of the State Space

The discretization of the state space means there are a fixed and finite number of
points needing evaluation. However, the dynamics of the state space are essentially
continuous while Dynamic Programming is naturally discrete. Therefore it is essential
to be able to use the efficiency of DP without being too negatively impacted by the
need to use sample points. Computation time will roughly scale linearly with the
number of sample points. Therefore the way the state space is decomposed into
sample points will have a large impact on both the quality of solution and also the
time required to find it.
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4.6.1 Grid-based Approach

The use grid-based state spaces are frequently used within artificial intelligence and
machine learning [36, 98], often treated as a Markov Decision Process. Splitting the
state space into a grid for the purposes of our problem will mean there are a finite
number of discrete states s ∈ S (the grid points) and therefore moves through the
state space can only occur between these grid points. At each state (or node), s, the
reachable region R, defined in Equation (4.4), restricts the possible control choices
to a subset of S. Furthermore the reachable region is further restricted so as to only
look ahead by some fixed radial distance, as in Figure 4.9(a). Therefore for each
state there is manageable subset of possible states SR ⊂ S to feasibly move to. The
corresponding cost, C(s, s′ = u(s)), of reaching each of these states, s′ ∈ SR, by
applying the control u, plus the cost-to-go, J(s′) from s′ is calculated. The next
state, s′, and the corresponding control s′ = u∗(s) which minimises the total cost is
then chosen.

In a basic grid based system, a movement can only occur between fixed nodes.
Therefore the control choice is a discrete one and must be chosen such that by applying
the control we arrive at another grid point. That is, given the current state s = (x1, x2)
and the state we wish to move to s′ = (x′1, x

′
2) the control choice of speeds V1 and V2

must be such that:
x′1 − x1

x′2 − x2

=
V1

V2

. (4.12)

Therefore, in the grid-based system, the control is as much a choice of next state, s′,
as it is the choice of speed. As a result, the restriction of choosing a control from only
a handful of choices can lead to very ‘choppy’ control policies and thus poor solutions.
The region of reachable states from the current state is show in Figure 4.9(a) and is
defined by some radial distance, ∆r as follows

0 < [(x′1 − x1) + (x′2 − x2)] ≤ ∆r, (4.13)

with the added condition, due to the dynamics of the aircrafts’ flight, that we can
only move in a positive direction in x1 and x2, that is x′1 > x1 and x′2 > x2.

In order to counteract this ‘choppyness’ a greater level of grid-resolution is re-
quired. The higher the resolution, the greater the number of control choices available
and the smoother the resulting solution. However, a simple grid-based approach
would, for a set resolution of n points for x1 and m for x2, yield n × m sample
points. Thus increasing the resolution by a factor of r in each direction would result
in r × n × r × m = r2 × n × m sample points, that is, it scales quadratically. Al-
though increased resolution is important for good quality solutions there is clearly a
compromise between evaluation time and resolution.

In order to mitigate some of these negative effects of using a discretized state
space two modifications are made to the simple grid-based approach. Firstly linear
interpolation is used to create a continuous control choice and associated cost. Sec-
ondly a quadtree decomposition is used to efficiently allocate resolution to areas of
greater non-linearity.
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Figure 4.9: Discretisation of State Space for Grid Based Method

4.6.2 Interpolated Cost Function

To overcome the shortcomings of a discrete state space a more continuous method
of linear interpolation can instead be used [32, 59]. In a grid based system every
grid square has four nodes, a Bottom Left (BL), a Bottom Right (BR), a Top Right
(TR) and a Top Left (TL). Since x1 and x2 can only move in a positive direction, we
take take BL to be our sample point s, and look to move in some direction across
the square (our control u). The TL and BR points will already have a cost-to-go,
J(sTL) & J(sBR), associated with them so via linear interpolation they can be used to
estimate a potential cost-to-go from any point on the diagonal line connecting them.
As shown in Figures 4.9(a) and 4.9(b), the reachable region overlaps the horizontal
line between the TL and BR and so can be used for interpolation. Figure 4.10 shows
that any point reached between TL and BR, by applying the control u(s), has a
estimated cost-to-go value J(u(s)). Therefore the total cost is the cost to reach the
line plus the interpolated cost-to-go J(s(u)) from that point.

With discrete choices the optimal choice is just the minimum of the finite set of
costs of possible choices. With a continuous choice there are an infinite amount of
choices. Therefore an one-dimensional interval search is used to find, to a sufficient
tolerance level, the optimal control choice over the interval of possible choices.

The basic grid based method can still be used, but instead of choosing a discrete
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Figure 4.10: Interpolation of cost-to-go J

node to move to, the choice becomes a continuous one of which exact direction to
move in. This results in a much smoother and more realistic control choice.

The last major issue of using a linear interpolation for J is that it assumes that
J can be locally approximated linearly to a sufficient level of accuracy. The finer the
resolution of the grid sample points the better the linear approximation will be. How-
ever, the quadratic scaling of sample points to resolution means that we cannot just
turn up the resolution without being heavily penalised computationally. Therefore a
‘smarter’ approach must be used to successfully incorporate linear interpolation into
the problem.

4.6.3 Quadtree decomposition

In order to more efficiently allocate the placement of sample points a quadtree com-
position is used. Quadtrees are a type of hierarchical data structure, often used in
image processing and recognition, and is based on a principle of recursive decomposi-
tion [71]. A region is recursively subdivided into four quadrants while some condition
is met. The subdivision is usually specified to occur at areas of interest or where data
points lie. The Quadtree decomposition in this scenario is used to subdivide the state
space S into a series of rectangles. Each rectangle is comprised of four corners, and
each of these corners represents a sample point to evaluate.

As linear interpolation is used, there is an assumption that the cost can be esti-
mated linearly using sufficient sample points. Therefore for the purposes of this prob-
lem the subdivision will occur over the regions that a greater resolution is required,
that is, the regions which are more non-linear. In particular the regions around the
formation state SF and those near the origin will be the most non-linear and there-
fore require the most decomposition. An example of this decomposition can be seen
in Figure 4.11, where the diagonal blue line represents the formation state, SF . In
this case the requiring condition for subdivision is if the region is sufficiently close
to any of SF (up to a subdivision depth limit of 4). As S is recursively subdivided
it results in greater resolution around the formation line. Comparing the quadtree
decomposition against a grid based method (Figure 4.12) shows that the number of
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(a) Depth 1 (b) Depth 2 (c) Depth 3 (d) Depth 4

Figure 4.11: Quadtree Based Method

(a) Grid Based - No.
of Nodes: 289 (exclud-
ing SF )

(b) Quadtree - No. of
Nodes: 133 (excluding
SF )

Figure 4.12: Node count grid based vs. quadtree

nodes needing evaluating is more than halved whilst keeping the resolution around
SF identical.

Therefore, with a quadtree decomposition, by adding sufficient sample points
around non-linearities, it is possible to reasonably linearly approximate the cost-to-go
function J without being computationally prohibited.

4.6.4 Interpolation between Quadtree sampling

Combining linear interpolation with the quadtree sampling is mostly straightforward,
following most of the same rules as on a grid-based approach. Every sample point
s must be evaluated and a cost-to-go J(s) must be assigned. For each sample point
there are four possible evaluation types as follows:

• Regular node: The sample point corresponds to the BL of a quadrant. It uses
the corresponding TL and BR nodes for interpolation. (As if Figure 4.13(a)).

• Hanging node 1: The sample point does not correspond to the BL of a quadrant,
due to a change in resolution. It must use the TL and BR of the corresponding
larger quadrant for interpolation. (As in Figure 4.13(b)).

• Hanging node 2: The sample point does not correspond to the BL of a quadrant,
due to a change in resolution. It must use the TL and BR of the corresponding
larger quadrant for interpolation. (As in Figure 4.13(c)).
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(a) Regular node (b) Hanging node type 1 (c) Hanging node type 2

Figure 4.13: Types of quadtree nodes needing evaluation and the corresponding in-
terpolation points

(a) Type 1 (b) Type 2 (c) Type 3

Figure 4.14: Types of quadtree nodes needing evaluation and the corresponding in-
terpolation points between formation points and non-formations points

• Outer edge node: The sample point corresponds to an outside edge of S. F1

(F2) has landed so flight F2 (F1) moves vertically (horizontally) along x2 (x1).

Sample points along the formation state SF are handled slightly differently. For-
mation sample points are placed at the following locations:

• Where any of the quadtree rectangle edges intersect the formation line SF ;

• Where any of the diagonal lines between the TL and BR of the quadtree rect-
angles intersect the formation line SF .

The three types of formation sample point and their corresponding line of inter-
polation are depicted in Figure 4.14. There is no real need for interpolation moving
between points on SF you simply choose the next sample point along SF and cal-
culate the corresponding cost. However, there is the option to move from SF to S
and in doing so leave formation. To calculate the cost to move from SF to S linear
interpolation can still be used.
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(a) Type 1(a): S to SF inter-
polation

(b) Type 1(b): S to S interpo-
lation

(c) Type 2(a): S to SF inter-
polation

(d) Type 2(b): S to S interpo-
lation

Figure 4.15: Interpolating when it is possible to move from S to SF . The sample
points used (black dots) and the corresponding interpolation line (Red line) used.
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(a) Cruise region of S (b) Climb and descent region
of S

(c) Combined regions cover-
ing all of S

Figure 4.16: Combining the two subregions of S to account for climbing, cruising and
descending

When using a sample point on S which can feasibly reach SF , then there is also
the option to move from S to SF and join in formation. Therefore it is necessary to
calculate the costs of the two scenarios, moving to SF or remaining on S, and choos-
ing the best one to follow. That is, firstly interpolate along SF (as in Figures 4.15(a)
and 4.15(c)) and choose where the best location would be to move to on SF , ignoring
S, that would minimise the cost to reach it plus the cost-to-go (note that this inter-
polation could span much further along SF than current grid square). Then compare
that cost to the cost of remaining on S, interpolating across the diagonal between TL
and BR as usual (as in Figures 4.15(b) and 4.15(d)).

This covers the majority of scenarios for incorporating linear interpolation and a
quadtree decomposition for use within this problem.

4.6.5 Climbing and Descending

There are regions of S whereby a policy assignment must be assessed slightly differ-
ently. First assume that each aircraft must climb and descend and a set rate over a
set distance, with these values remaining consistent with estimations from Chapter 2.
When both aircraft are at cruise then the speed-control choice is over the two variable
speeds V1 and V2, both of which can be adjusted in order to minimise the total fuel
cost. If one of the aircraft is climbing then their speed Vclimb is fixed and therefore
only the other aircraft can alter its speed. If both are climbing, then there is no
control and they simply follow the speed defined by V1climb

and V2climb
. The same also

applies when one or both aircraft are descending, with their descent speed denoted
by V1desc and V2desc .

Therefore it is necessary to adjust S slightly. Instead, the quadtree decomposition
is applied only over the region of S corresponding to both flight F1 and F2 are in
cruise. The remaining climbing/descending regions are then simply divided using the
outermost sample points of the inner cruise section as shown in Figure 4.16.

With all the elements of the deterministic problem in place, the region S can be
solved via dynamic programming and value iteration outlined in Section 4.5. This
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essentially solves the deterministic problem of deciding optimal speed-control policies
for two aircraft to fly for any position within the state space. Therefore, given the
current position of the two aircraft there is a pre-defined optimal policy of speeds for
each of the aircraft to fly for the rest of the flight.

In the following Section uncertainty is introduced into the problem. The speed-
policies and corresponding values calculated for the cost-to-go function J for any point
on S are fundamental. The deterministic solution provides a basis for calculating costs
within the stochastic stage of the problem.

4.7 Stochastic Dynamic Programming

When uncertainty is introduced into the problem Stochastic Dynamic Programming
(SDP) is needed. Without certainty about the next state, at each stage of the flight
there needs to be a best action to take given any possible realization of the uncertainty.
Therefore one does not know the absolute best solution, rather a set of policies to
follow (based on the best expected outcome). Having costs which are sensitive to
probabilistic events can be ‘risky’ and therefore the underlying solutions can also be
sensitive. This methodology is key to trying to put a ‘cost’ on a possible solution
with the intention of eventually making the solutions robust.

The SDP is very similar to the DP problem of Section 4.5. The main difference
is that the cost-to-go at each state is minimized over a probabilistic expected cost
and so cannot be guaranteed. The stochasticity of the problem is modelled using the
same probability density functions as the Hold approach, first outlined in Section 4.2.

4.7.1 Problem Formulation

The stochastic region of the problem, Ŝ, is defined by two dimensions, a spatial
distance xi (for i ∈ {1, 2}) and a time, t. Therefore the axes of S, i.e. when x1 = 0
and/or x2 = 0 comprise the spatial dimension. The time dimension is limited by the
total flight duration, that is, for each aircraft i ∈ {1, 2}, t is bounded by Timin

= ximax

Vimax

and Timax = ximax

Vimin
. Therefore for each aircraft i the stochastic state-space is defined

over t as:
Ŝi ⊆ ∪i∈{1,2}{xi × [Timin

, Timax ]}. (4.14)

A state s = (x, t) ∈ Ŝ consists of both a position x along a particular axis and
the time t it is at that location, shown in Figure 4.17. The control u(s) is the choice
of speed, V , for the aircraft to fly to reach the next state. As each of the axes xi
are discretized into Ni spatial states {0, xi1 , xi2 , . . . , xiNi

}, spatially we need only look
ahead by one step. Therefore for the current state s = (xik , t) a speed-control choice

of u(s) = V would result in the next state being s′ = (xik+1
, t+

xik+1
−xik
V

)
Furthermore at each spatial state xik there is a feasible time range at which the

aircraft could be in. This temporal region of reachability, R, at time t is defined by the

minimum and maximum velocities of the aircraft, that isR = t′ : t′ ∈
[
t+ ∆xik

Vimax
, t+ ∆xik

Vimin

]
.
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(a) Stochastic State Space for F1
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(b) Stochastic State Space for F2

Figure 4.17: Stochastic State Space for the airbourne aircraft

The stochastic state-space Ŝ is then augmented with a binary state δ ∈ {0, 1}
which defines whether or not the other aircraft has taken off yet. Therefore a solution
begins in Ŝ and as soon as the other aircraft takes off the solution transitions to the
deterministic solution and the DP solution on S is used. Therefore at each state
s = (xik , t, δ) ∈ Ŝ a decision u(t) is made of how fast to fly and essentially how many
timesteps t to take to reach the next discrete way point xik+1

, if the other aircraft
takes-off (δ = 1) the solution transitions to S and the DP solution is used. Finally
given a finishing goal location G and initial state s0 a solution is obtained by finding
policies π ∈ Π which are optimal.

In the stochastic problem, the performance of any policy π is determined by its
expected cost, governed by a given probability distribution f . Given the current state
s = (x, t, δ) and the control applied gives the next state u(s) = s′ = (x′, t′, δ′). Let us
define the probability functional F , that the other aircraft takes off at s′, as

F(s, s′) = P(s′, δ) =

{
1 if δ = 1,

f(t, t′|r, p) otherwise.
(4.15)

With this in place the expected value function is defined as,

E(s, s′) =
∑
s′∈S

[F(s)Jπ(x′, t′, 1) + (1−F(s))Jπ(x′, t′, 0)]. (4.16)

where the corresponding cost-to-go function is,

Jπ(s) = C(s, π(s)) + E(s, s′). (4.17)

This final Bellman equations are therefore

J∗(s) = 0 if s ∈ G, otherwise,

J∗(s) = min
u∈U(s)

[E(s, s′)] . (4.18)

Then for a given formation pair a final solution would consist of two parts. An optimal
expected cost-to-go J∗(s0), from the initial state s0, and the corresponding optimal
policy π∗ to follow until the total delay is realized.
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(a) Solution Path: Stochastic
State Space for F2
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(b) Solution Path: Deterministic
State Space for both F1 and F2

airbourne

Figure 4.18: Solution Path for F2: Between 1 and 2 F2 flies the SDP policy as F1

is delayed. Between 2 and 3 both aircraft fly the DP policy, to meet at 3 and fly in
formation until 4 where the break and fly solo.

Finally, the example of Figure 4.8 is plotted again in Figure 4.18, showing the
relationship between the different state spaces, and outlines a possible solution path.
When F2 is airbourne the stochastic problem is responsible for assigning a policy
between points 1 − 2, when F1 is still on the ground. As soon as the other aircraft
has taken off (point 2) and both are airbourne the problem is deterministic and the
solution path from the DP can then be used between 2 − 4. That is, the solution
path jumps from the stochastic state space to the deterministic one, once the delay
has been realised.

4.7.2 Sampling of the stochastic state space

The stochastic states space Ŝ is comprised of two dimensions, a spatial dimension,
either x1 or x2, and a temporal dimension, t. Any movement through Ŝ can only be
in positive direction and with the gradient representing the aircraft speed (V = ∆x

∆t
).

The entirety of this state space therefore cannot be reached (nor does it need to
be) due to minimum and maximum aircraft velocities. Due to this, for a simple
grid based decomposition, there is already a drastic reduction in the number of nodes
needing evaluation. Therefore a grid based resolution is sufficient for Ŝ. The temporal
resolution for Ŝ is simply chosen to be a sensible time step tstep (usually chosen to be
1 minute as this is the same resolution of the PDFs used). The spatial resolution is
chosen so that it matches up with the resolution of the quadtree of S. Effectively using
a binary tree decomposition (which is the one-dimensional analogue of a quadtree of
Section 4.6.3), to again, add resolution to those areas with a greater level of non-
linearity.

The methods for the stochastic state-space are similar to those methods already
outlined in Section 4.5 but without needing to use quadtree sampling. The inter-
polation discussed in Section 4.6.2 will still be used, but the interpolation will only
occur over the variable of time, t, at the fixed discretised values of xi as shown in
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(a) Reachable sample points of next spa-
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(b) Corresponding expected cost-
to-reach calculation: a cumulative
calculation over each timestep

Figure 4.19: Grid Based Interpolation for Stochastic State Space

Figure 4.19. In that sense, with a known cost-to-go value from each sample point
(the black dots of Figure 4.19(a)), the cost-to-go function will be a linear interpola-
tion over those sample points and their values. The control choice, of what speed to
fly, is then a continuous one.

The final modification is to the cost-to-reach function C(s, s′, δ) to go between
states s and s′, as this value is also uncertain. Recall the PDF distributions of
possible delays outlined in Section 4.2, whereby an aircraft on the ground is assumed
to take off only at the discrete time steps t, with each time step spacing of one minute.
Therefore as the airbourne aircraft flies between two states at the control-chosen speed
V = u(s), in kms per time step (i.e. km per minute), there is the possibility that
the other aircraft will take off. The cost-to-reach the next state for a given control
choice, is the probablistic expected cost over all possible outcomes.

That is, for each timestep j ∈ {1, 2, ...jmax}, between s and s′ there is a corre-
sponding spatial location xik + V × j creating a set of possible locations,

I = ∪j∈{1,...,jmax}{xik + V × j, t+ j} (4.19)

outwith the sample points where the other aircraft could take off, as show by the blue
dots in Figure 4.19(b). For each of these points there are two possibilities, either the
other aircraft takes off at that point, or it doesn’t. The cost associated with each
possible event is then proportionally weighted by its probability of occuring, with the
sum of these creating the expected value. Additionally, the maximum timestep value

is defined as jmax = b (xik+1
−xik )

V
c, meaning there is a remaining small part to take into

account between the last integer timestep and the time we reach the next spatial grid
point xik+1

. As it is impossible for the other aircraft to take off at the intercept, the
cost is simply the interpolation between the two, already calculated, grid points at
(xik+1

, t+jmax) and (xik+1
, t+jmax +1), as depicted by the gray dots of Figure 4.19(b).
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Figure 4.20: The correspondence between S and the two Ŝ state spaces

4.7.3 Combining the Deterministic and Stochastic State Spaces

As outlined in Sections 4.5 and 4.7 there are two distinct but linked subproblems
corresponding to the two state spaces S and Ŝ. The deterministic problem is solved
first, giving a cost-to-go function J of all possible points s ∈ S. Most importantly,
however, is the calculation of the cost-to-go values along for the states which one of
x1 or x2 is zero (i.e. the axes of S). This gives the cost-to-go at the point the other
aircraft takes off, and allows us to calculate an expected cost-to-go function for the
stochastic problem.

There are three subproblems in total, one S for both flights and then an Ŝ for
each of the two flights F1 and F2. The order of solving is as follows:

• S for both flights: The deterministic problem solved via DP.

• Ŝ for F1: When F2 has yet to take off. The values found for S when x2 = 0 are
then used within the SDP.

• Ŝ for F2: When F1 has yet to take off. The values found for S when x1 = 0 are
then used within the SDP.

Figure 4.20 shows how the three state spaces interact and share common states
variables. It can be thought of as three walls of a cube. A solution path starts at the
origin (0, 0, 0). As the first flight Fi (for an i ∈ {1, 2}) takes off it moves along its
‘wall’ Ŝ for Fi, then as soon as the other flight takes off the solution moves onto S
and continues until it reaches the end of S.

The cost-to-go function J along the axes of S is used within the stochastic prob-
lem. As S is sampled and a linear interpolation is used then so too will the function
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used within Ŝ. As explored in Section 4.7.2 and shown in Figure 4.20, the resolu-
tion along the axes extends into Ŝ and is determined by the quadtree decomposition
of S. Therefore it is important to keep a quadtree subdivision condition for S in-
cluded for areas around the origin and initial take off. This allows for both a better
approximation and also a suitable spatial subdivision of Ŝ.

4.8 Example Formation

In this section the results of an example formation pairing are explored. The two
flights used are:

• Flight 1: Hartsfield-Jackson Atlanta International Airport (ATL) to Manchester
Airport (MAN)

• Flight 2: Washington Dulles International Airport (IAD) to London Heathrow
Airport (LHR)

These flights represent a typical potential formation pairing within the transat-
lantic flight list. This formation route is first calculated using the methodology of
Chapter 2 and results in a very reasonable saving of 8.1% against flying solo. Al-
though the two departure airports are located about 850km apart, Flight 1’s solo
great circle path passes within 20kms of Flight 2’s departure airport IAD. The to-
tal additional distance covered by the two flights when in formation is fairly low at
61kms, so it is clear there are minimal deviations resulting in a very good formation
flight potential.

Using the methods outlined in this chapter the Deterministic and Stochastic Dy-
namic Programming problems are solved for this formation pairing. A ‘solution’ to
this problem is considered to be a set of optimal policies, and their associated costs, to
follow for any possible realisation of ground delay. Unlike the deterministic formation
routing problem of Chapter 2 where the solution is a single number (the percentage
saving), there are instead a number of different realisable outcomes and associated
costs.

Figures 4.21(a) and 4.21(b) show the stochastic control policy π̂∗ for what will be
referred to as the No-TakeOff-Policy’ (NTOP). The NTOP is the control policy (in
this case the speed to fly) the flight follows if the other flight never takes-off (infinitely
delayed). It would outline a path through Ŝ, then if the other flight were to takeoff
the policy would switch from this, to the one calculated for the deterministic problem
π∗. Note here that the first and last ‘step’ of each NTOP are the predefined Vclimb

and Vdescend (respectively) and of which we have no control.
Flight 1 is scheduled to take off first (about 1 hour before Flight 2) and so the two

NTOPs are quite distinct, so in this scenario the focus lies on the NTOP for Flight
1. The red vertical line indicates how far along the path each flight expects to meet
in formation. Flight 1, as it takes off some time before, is just over 1000 km into
its journey, while Flight 2 expects to meet just after it finishes climbing. The Flight
2 NTOP can therefore only be reactive, slowing down slightly, in case Flight 1 is
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(a) Flight 1 ATL-MAN
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(b) Flight 2 IAD-LHR

Figure 4.21: No-Takeoff-Policy for each flight

only a little late. It steadily converges back to its nominal speed as Flight 1 becomes
too late for any possible saving. The NTOP for Flight 1 on the other hand has the
opportunity to be proactive, initially slowing down before the anticipated take off in
case Flight 2 takes off early, then remains slow in an attempt to ‘wait’ for Flight 2.
Again this control slowly converges back to the nominal cruise speed as the expected
saving decreases.

The solution to this problem consists of a set of optimal policies for any possible
delay, then each of these policies has an associated cost. That is, the total cost of
following a particular policy, due to a particular delay having been realised. Clearly
if either of the flights never takes off (and a NTOP is followed) then the resulting
realised cost will be the worst it can possibly be for that flight. Instead of a saving,
as no formation is made, the formation would result in a loss. Then the set of all
possible outcomes and the associated costs define a set of realisable savings.
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Figure 4.22: Probability distribution of possible savings for ATL-MAN and IAD-LHR

Figure 4.22 shows the probability distribution of achieving particular percentage
savings (at intervals of 0.5%) for this particular formation. The expected saving, i.e.
the sum of every possible outcome multiplied by the probability of it occurring, is
3.6%. This is just under half of the original 8.1% saving that was possible in a delay-
free scenario, but in fact represents a very reasonable saving given delay. If you were
to simulate this formation’s policies n times, then the average saving would converge
to the expected value as n tends to infinity. However as achievable results are spread
out no saving can be guaranteed and therefore an notion of risk and robustness must
be introduced to help quantify what constitutes a ‘good’ solution.

4.9 Robust Planning

In the presence of uncertainty an issue arises in that the cost function can take a
number of different values as a direct response to a specific realisation of uncertainty
[90]. That is, an expected value is only a theoretical average, in fact, it is more likely
that the formation achieves a different saving all together. For example if we had a
50% chance of a saving of −2% and a 50% chance of saving 4% our expected saving
would be 1%, which on the surface seems reasonable, but in fact half of the time this
formation would be actually be more expensive than just flying solo. What is most
important, therefore, is the probabilistic ‘spread’ (also known as variability, scatter
or dispersion) of the possible savings. That is, how far are we likely to deviate from
the expected value.

The most common measure of spread is the standard deviation (σ), a lower σ
would indicate the data points lie close to the expected value, while a higher σ would
mean they are more spread out. For a normally distributed data set the percentage of
values expected to lie within the Confidence Interval (CI) (x̄−λσ, x̄+λσ) is shown in
Table 4.2. This means that for a for formation with an expected value x̄ and standard
deviation σ, there is a 95% chance the formation will realise a solution within the
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Table 4.2: The percentage of values expected to lie within Confidence Intervals CI =
(x̄− λσ, x̄+ λσ)

λσ % within CI % outside CI
1σ 68.27% 31.73%
2σ 95.45% 4.55%
3σ 99.73% 0.27%
4σ 99.99% 0.01%

interval (x̄ − 2σ, x̄ + 2σ) and a 99% chance it lies within (x̄ − 3σ, x̄ + 3σ). For the
example of Section 4.8 the interval for ±3σ is shown in Figure 4.22 and shows that
there is only a small chance that this formation will result in a negative saving.

It is clear from the example of Section 4.8 that a single number, such as the
expected value, cannot adequately describe how ‘good’ a formation is likely to be.
Instead the level of variation from this expected value needs to also be considered,
i.e. the standard deviation. Formations with high levels of variability (a high σ)
have a greater level or risk associated with them, as their possible results are more
spread out. It is important, when deciding on which formations to allocate, to have
a notion of the risk associated with each one. In order to get an optimal yet robust
allocation of formations one needs to be able to maximise the potential saving whilst
simultaneously minimising this variability.

4.9.1 Robust formation assignment using a MILP

Using the same MILP assignment problem of Equation (2.17) as outlined in Chapter 2
we look to minimise the total cost over the entire fleet of aircraft. This approach of this
section will follow a similar idea to that outlined by Bertuccelli et al. [13], whereby
a penalty, associated with the level of uncertainty, is imposed.In the basic MILP
the costs cj are chosen to be the estimated fuel burn for a formation xj (although
any metric can be used). For Nf total possible formations, the total cost is simply∑Nf

j=1 cjxj (subject to each aircraft only belonging to one formation and xj being
binary).

In order to include this idea of robustness we choose to also optimise for uncer-
tainty, making this a multi-objective optimization. To include this extra objective
into the original MILP we can simply adjust the cost by penalising the associated
variability, i.e. the standard deviation, of each formation σj. That is, we add a
penalty term λσ into the cost function which is proportional, by a factor of λ, to
the standard deviation. Then for a given penalty weighting λ on σ the assignment
problem becomes
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minimize
x

Nf∑
j=1

(cj + λσj)xj,

subject to

Nf∑
j=1

pj,ixj = 1, ∀i ∈ {1, .., Na},

xj binary, ∀i ∈ {1, .., Na}.

(4.20)

With this in place λ can be thought of as a ‘risk-tuning factor’ [13]. Increasing λ
will put a greater penalty on each formation’s standard deviation, σ, and therefore
begin to make those formations with a higher variability less desirable. This λ es-
sentially corresponds to that of Table 4.2 and tuning this factor will simply cost the
formations based on their confidence interval. More importantly though is that this
λ reflects the desired level of risk aversion. A smaller λ will lead to greater expected
savings but would be riskier than a larger λ.

Finally if we let csoloi denote the solo cost of a formation i. Then for each formation
i the we define a ‘risk level’

rσ = 100× σi/csoloi ,

that is, the standard deviation as a percentage of the solo cost. A risk level of rσ = 2
would correspond to the standard deviation being equivalent to 2% of the solo cost.
Very roughly speaking, assuming a normal distribution, for an expected formation
cost x̄ and the corresponding percentage saving, psx̄, the 99% CI (x̄ − 3σ, x̄ + 3σ)
would then be equivalent to (psx̄ − 3rσ, psx̄ + 3rσ). Thus, for a risk level of rσ = 2
then with 99% confidence the solution will lie in (psx̄ − 6, psx̄ + 6). Therefore for
λ = 3 (the 99% CI) the expected saving percentage psx̄ would need to be at least 6%
for this formation to be almost always favourable, anything less and the formation
might often end up costing more than solo flight. Thus, the risk levels, λ values and
the confidence intervals of Table 4.2 are therefore all closely linked.

4.9.2 Portfolio Optimization

One of the main ideas behind modern portfolio theory is to choose a selection of invest-
ments, a portfolio, in an attempt to maximize the expected return for a given amount
of risk. Where risk is defined to be the standard deviation of the return. Therefore
consider each formation to be an investment with the return on this investment being
the fuel saving. A portfolio would thus be an selection of these investments, that
is, an allocation of formation flights. For a given level of risk, the robust MILP of
Section 4.9.1 can therefore be used to calculate the optimal portfolio. Altering ones
level of risk aversion is then similar to tuning the λ penalty factor on the standard
deviation.

Optimal portfolios can be calculated for any level of λ and thus any level of risk.
Now since instead of just trying to minimize for cost we are also trying to minimize risk
this leads to a multi-objective optimization. There is no intrinsic equivalence between
a cost and a level of risk, instead there is a trade off between risk and reward. One
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could maximise reward whilst ignoring risk, minimize risk whilst ignoring reward or
some combination of the two. Instead one looks for what is called ‘pareto efficiency’,
whereby one objective cannot be improved without making the other worse off. In
portfolio theory this is known as an ‘efficient frontier’ (Figure 4.23). Essentially,
instead of a one dimensional solution (a point) there are two-dimensions (a curve) of
points which are all equally ‘efficient’. By choosing the value for one variable results
in the optimal value for the other. Thus for a set level of risk, there is an associated
return which is optimal and equivalently for a set level of return there is a level of
risk which is optimal. Any point which does not lie on this frontier is known as
‘inefficient’, and can be improved by moving it onto the efficient frontier, either the
same reward for less risk, a greater reward for the same risk or a combination of both.

A solution to the Robust assignment problem, therefore, is the calculation of the
efficient frontier for the allocation of flights. With this, one can pick their level of
risk aversion and simultaneously get their optimal expected return. Similarly if a set
expected return is desired then there is then a corresponding minimum risk allocation.

4.10 Transatlantic Case Study

This case study continues with the set of transatlantic flights of Chapter 2. Using the
methodology of the two approaches outlined in this chapter we look to make robust
assignments of formations. Each method has been implemented in Matlab and then
run for all 21, 945 possible formations.

4.10.1 Holding Pattern Approach

In order to calculate a solution for the holding pattern approach, for a given cutoff
time tco, it suffices to simply calculate (Equation (4.2)) for every possible relative
delay. Every relative delay has a probability associated with it, while there is no
inherent stochasticity in the cost function there is in the realisation of a delay. There-
fore each solution is essentially a list of outcomes, its probability of occurring and the
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corresponding costs. For each formation for a given cutoff time tco it takes roughly 2
seconds to calculate the entire solution (including the routing of Chapter 2). There-
fore for all possible combinations it takes just over 12 hours of computation time to
calculate all the necessary costs needed for use within the assignment stage.

Recall from Section 4.9.1 the introduction of the risk penalty λ for use within
the MILP of Equation (4.20). For each formation ci is the expected cost, σi is the
standard deviation and xi is the binary allocation of that formation to the solution.
Using different values for λ, along with this MILP, can then be used to calculate the
efficient frontier of Section 4.9.2.

As discussed in Section 4.3.1 an important variable within the hold approach
is to specify a cutoff time tco. Therefore it is important to show the results for a
number of different tco values. Allocating formations based on their expected values
alone, i.e. when λ = 0, for the cutoff times tco = 15, 60, 120 and 240 minutes
results in an overall expected savings of 2.8%, 4.7%, 5.3% and 5.5% respectively. By
gradually increasing λ the ‘riskier’ formations are increasingly penalised resulting in
less risky allocations. As shown in Figure 4.24, by increasing λ and removing the
risky formations, results in a decreased overall expected saving. At relatively low
levels of λ it becomes unfavourable to fly in formation when using this hold pattern
approach.

What is clear from Figure 4.24 is that without a reasonable penalty for uncertainty
and an increasing cutoff value tco the allocations can have a large range of achievable
values. At the absolute worst, for the unpenalised case, with a cutoff of 240 minutes
the entire fleet could average a loss of almost 25%. However, by calculating the
efficient frontiers, as shown in Figure 4.25, for the four tco values of 15, 60, 120 and
240 minutes one can quickly compare the risk versus rewards of potential cutoff times.
The efficient frontier described in Section 4.9.2 and shown in Figure 4.25 depicts
the optimal formation allocation (or portfolio) for a given level of risk. Lower-risk
portfolios are achieved by increasing λ, while higher-risk portfolios are a result of
lower λ values. There may be formation allocations which lie below or to the right of
this efficient frontier, but they are inefficient and can therefore always be improved.

For a risk level of 1, one could expect to achieve anywhere from 0.8% for tco = 15
to 2.5% for tco = 240. Similarly for a greater risk level of 2, one could expect to
achieve between 1.5% for tco = 15 to 4.1% for tco = 240. However, as discussed
in Section 4.3.1, for a number of reasons high values of tco would be very unlikely.
Therefore tco acts more as a theoretical maximum, rather than an likely achievable
one. Cutoff levels up to around an hour may be possible and thus the corresponding
line in Figure 4.25 acts as a reasonable guide.

4.10.2 State Space Approach

For each of the 21, 945 possible formations the DP and SDP are run, with each
one taking roughly 30 seconds. This means, to calculate all combinations around
180 hours of computation are required. The act of enumerating all combinations,
however, is itself embarrassingly parallelisable so can therefore be run on a number of
cores or a computer cluster to reduce the realisable time to the user (e.g. a quad-core
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(c) Cutoff time tco = 120
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(d) Cutoff time tco = 240

Figure 4.24: Expected values for Tuning λ
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Figure 4.25: Efficient frontier of formation allocations

machine would take roughly 180/4 = 45 hours).
For each combination, there is a list of possible outcomes, the probability of them

occurring and the corresponding costs. From this the expected values and standard
deviations are calculated for use within the allocation problem.

Again the idea is to tune λ to penalise the risky formations and achieve more
robust solutions. For the unpenalised case, λ = 0, the allocation results in an overall
expected saving of about 5.5%. As the value for λ is gradually increased the average
expected saving begins to decrease as shown in Figure 4.26. As λ reaches roughly 6
the penalty on uncertainty is so high that it is no longer favourable to fly in formation.

The efficient frontier of Figure 4.27 shows the tradeoff between a given level of
risk-aversion and the expected reward. A maximum risk level of just under 1.5 leads
to the unpenalised (maximum) expected saving of 5.5% while a level of 1 would yield
about 4%.

4.10.3 Comparison of Methods

The hold approach provides a reasonably realistic and straight forward approach to
mitigating the effect ground delay has on formation flight. However, the large jump
between the cost function of Equation (4.2) for varying cutoffs values tco results in
a greater spread of possible results. The large proportion of good results partly
outweighs the small proportion of extremely bad ones. However, those bad results
could lay anywhere between −5% and −25% yielding a greater standard deviation
σ and thus riskier results. The State Space approach provides results which are
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Figure 4.26: Lambda penalty and the corresponding expected savings
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closer together. The cost of following a policy outlined by the State Space approach
is a small reduction in the ‘best-case’ outcome. The ‘worst-case’ is also relatively
contained, at most causing a 1% loss.

What is most importantly clear is that the State Space approach results in an
efficient frontier far superior to that of the Hold approach. The same range of expected
savings 0 − 5.5% can be achieved for a considerably lower level of risk when using
the State Space approach. The main drawback of the State Space approach is that,
currently, it takes roughly 30 seconds per formation compared to the Hold approach’s
2 seconds. However, as both methods are embarrassingly parallelisable this can be
compensated for by using multiple cores and multiple computers.

4.10.4 Using a Nominal Speed Policy

The results of the preceding sections have shown that the Dynamic Programming ap-
proach produces superior results to the hold approach. However, the main difference
between the two approaches is whether or not flights should continue along their flight
path once they reach the rendezvous location. The Dynamic Programming approach
has the added subproblem of calculating a proactive policy to follow until a delay is
realised. It is therefore reasonable to question how much of the delay is mitigated by
the deterministic part of the dynamic programming policy.

With this in mind we therefore assess a third approach, the nominal speed policy.
We first calculate the DP solution, but then instead of assinging an SDP policy we
apply a fixed control for the whole of the stochastic problem. That is, the aircraft
simply flies its nominal cruise speed along its flight path until a delay is realised, then
both flights follow their deterministic policy.

Calculating the efficient frontier for this approach yields an extremely interesting
result and is plotted in Figure 4.28. What can be seen is that by using the nominal
speed policy results in an almost identical efficient frontier to that of when the SDP
is used. Clearly due to how uncertain the take off time is, its seems easier to just
fly at a fixed nominal speed until the delay is realised. Therefore the majority of the
improvement between the Hold approach and the State Space approach lies within
the deterministic en-route policies. Interestingly, that means that there is not a great
deal that can be done proactively to mitigate ground delay, instead a good reactive
policy is more important.

4.11 Summary

With an introduction of uncertainty into the problem this chapter has investigated
two possible and distinct strategies for mitigating the impact ground delay has on
formation flight.

The first was a simplistic approach, instructing aircraft to enter a holding pattern
at the point of rendezvous to absorb any delay to the other aircraft. An important
aspect of this approach relied on setting a suitable cutoff time, defining the maximum
allowable time for one aircraft to hold and wait for the other to arrive. Any delay
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Figure 4.28: Efficient frontiers using full SDP and DP compared to a nominal speed
policy and DP

past the cutoff time produced losses corresponding to the cutoff time. High cutoff
times produced good expected results but at the cost of the potential of large losses
if a delay was still higher than the cutoff. Issues of practicality would limit cutoff
times, likely up to about 60 minutes.

The second approach was a more in depth method, and the main focus of this
chapter, using a State Space approach to model the ground delay problem. The
approach involved splitting the problem into two closely linked subproblems. The
deterministic problem, when both aircraft have taken off, was set up as Dynamic
Program to be solved via value iteration. The solution to this deterministic problem
was used within stochastic stage.

In order to account for issues arising from the discretisation of this state space a
method of interpolation was added to the standard grid based approach. This allowed
for smoother cost functions and in turn smoother controls. Additionally, in order to
increase the resolution of the grid around areas of greater non-linearity without being
computationally prohibited, a quadtree based decomposition was implemented. This
‘shifted’ resolution to areas of greater non-linearity and allowed the linear approxi-
mation needed for interpolation.

The stochasticity was defined by airport-specific probability distributions mod-
elled on historical data. For each flight the stochastic problem, when the other flight
has not taken off, was modelled using a Stochastic Dynamic Program and solved us-
ing value iteration. Optimal Policies were calculated for any possible realisation of
delay.
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A notion of risk was introduced corresponding to the standard deviation of the
results. The traditional MILP of previous chapters was adjusted to include a weighted
penalty function on a formation’s risk. This allowed the risk tolerance to be tuned
to filter out formations which were less robust. The idea of portfolio optimization
was also introduced to produce efficient frontiers defining the reward corresponding
to any level of risk-aversion.

Finally a transatlantic case study compared the two methods against a list of
210 transatlantic flights. Although similar expected savings were possible from both
the Hold approach and the State Space approach, comparison of efficient frontiers
clearly shows that the State Space approach produces significantly less-risky results
for any level of reward. Interstingly it was shown that the reactive en-route policies
of the deterministic DP were more important. Using a fixed-speed-control for the
uncertain part of the problem yeilded almost identical efficient frontiers, prompting
the conclusion that complex proactive polices may not be entirely necessary.
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Chapter 5

Formation Flight Case Studies

5.1 Introduction

For formation flight to become a reality within the commercial flight sector, significant
potential needs to be shown. It is therefore necessary to investigate a number of
differing scenarios where formation flight may be of benefit. This chapter presents
a comparison of three distinct data sets where formation flight could feasibly take
place.

The objective of this Chapter is to observe patterns and influencing factors af-
fecting formations and the associated fuel savings. Firstly in Section 5.2, the three
case studies will be presented, with Section 5.3 attempting to categorise them us-
ing a simple graph-theoretic approach. The results of applying the methodologies of
Chapter 2 to each of the case studies will then be assessed in Section 5.5. Finally
correlations between a number of key values are measured and the results presented
in Section 5.6, whereby some of the features common amongst better-performing
formations are discussed.

5.2 Case Study Data Sets

Firstly a set of 210 transatlantic flights represents a region with great potential, with
all flights travelling far enough and in similar enough directions to produce very
favourable formations. Moving to a larger, yet more diverse, set of EasyJet flights
provides a different look at possible savings, with flights greatly ranging in distance
and directions. Finally a look at a list of Singapore Airlines flights allows us to assess
the potential when the airline acts more like a hub and spoke network.

5.2.1 Transatlantic Flights

The transatlantic data set consists of 210 flights flying between the United States
and Europe. Each route is based on a real flight including a specific aircraft type and
scheduled departure time. These flights have no specific date associated with them,
rather it is assumed that this is a list of flights that all occur on the same day and
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repeat. The flights have no specific company assigned to them but are assumed to
act like a single company, trying to optimize savings for the entire fleet rather than
individual gain.

This list of transatlantic flights provides a very likely scenario where formation
flight might be employed. It has therefore been used throughout this Thesis as a
baseline for which to compare methods and results. Additionally 210 flights is a
data set which is large enough to produce interesting results, whilst remaining small
enough to not to result in computational intractability.

All 210 flights are distinct and result in roughly 22, 000 different formation com-
binations.

5.2.2 EasyJet European Flights

In the event of the adoption of formation flight within commercial aviation, it is likely
that initially individual companies will join formations amongst their own fleet. As
a result this would simplify the economic problem of how to allocate and share any
formation savings.

Easyjet is the second largest European low cost carrier airline [34] and therefore
makes an excellent company case study for the potential of formation flight. The
entire data set consists of 8, 750 easyjet flights over 7 days. As some flights run on
multiple days the number of unique flights was 4238. Furthermore many routes were
flown by multiple flights at different times of the day and so some flights were filtered
and restricted from flying together.

For each of the 7 days there were between 1100 − 1400 flights, resulting in be-
tween 600, 000−850, 000 possible combinations needing evaluation. For each of these
formation combinations the methods of Chapter 2 were used to calculate the optimal
formation route and the corresponding cost.

Preliminary results indicated that there is not a significant difference between
each of the seven days. Therefore, for clarity, only flights on a Monday are considered
in this Chapter. This leaves 1313 flights to consider and results in around 860, 000
combinations to consider, making this the largest of the three case studies.

5.2.3 Singapore Airlines Flights

Singapore Airlines is a major airline company serving flights from Southeast, East
and South Asia to many domestic and international destinations. It acts as a good
case study for a wide range of flight distances, ranging mostly between medium haul
to super-long haul flights. The main difference between these flights and ones seen in
the other case studies is that the vast majority of the routes are either flying from or
to Singapore, acting like a hub-network so not all routes are natural candidates for
formation flight.

The data set contains 417 different Singapore Airlines flights running over a 7 day
period. The number of flights per day ranges between 228 and 242 resulting in a
respective range of formation combinations of between 25, 000 and 29, 000. As with

104



the EasyJet flights, only those flights on a Monday are considered. As a result there
are 232 flights, equating to just under 27, 000 combinations needing evaluation.

5.3 Comparing Airline Network Design

When investigating the potential for formation flight within commercial aviation it is
important to analyse current airline network structures. A graph-theoretic approach
will hopefully outline network features suitable for formation flight. However, it
is important to distinguish that the same terminology usually used within airport
network analysis often refers to entire routes encounterable by a passenger. That is,
airline networks which route longer journeys through intermediary airports (hubs),
such as Schiphol Airport Amsterdam (AMS) are usually referred to as hub and spoke
networks. Instead network analysis will be with reference to the topology of all the
network of point-to-point flight routes making up the network.

Some simple analysis of the flight network design has been depicted in Figures 5.1,
5.2 and 5.3. Airports are represented as nodes of a graph, while flights are the arcs
between any two nodes. The ‘degree’ of a node is defined as the number of arcs
incident to the node. Therefore the degree of an airport is the total number of flights
which fly to, or from that airport.

With this in mind, Figure 5.1 outlines the flight network as a representational
graph-like structure. Then using Figure 5.1(b) as an example, node 1 has degree 3,
while node 5 has degree 6. The three different graph structures are backed up by
the circular connectivity plots of Figure 5.2. The airports (nodes) are represented
as equally spaced points on a circle, ordered by the degree of each airport. Finally
Figure 5.3 shows the sparsity of the entire network. The airports are first ordered by
their longitude, then the points represent where there is an arc between two airports
and thus every point corresponds to a flight.

It is widely observed [23, 61] that the deregulation of the US domestic passenger
aviation in 1978 resulted in a trend away from direct flights, to having larger airports
(hubs) act as transfer points for flights, creating what is known as a hub-and-spoke
network. Regional carrier airlines, such as Singapore Airlines, are an extreme example
of this, whereby the main hub is Singapore Changi Airport (SIN), with the majority of
their flights in some way involving SIN airport. An example representation of this kind
of network is in Figure 5.1(c), which resembles a ‘hub-and-spoke’ topology with node
1 representing SIN airport. A hub-and-spoke network is generally distinguishable by
having a single high-degree node connected to other nodes of low degree (typically
degree one). In the flight list there are clearly a number of other cross-connections
between other airports, but as a distinguishing characteristic, the Singapore Airlines
flights more closely resemble this kind of hub-and-spoke. It is clear from the ordered
connectivity plot of Figure 5.2(c) and the network sparsity plot of Figure 5.3(c) that
the entire network is focused around one node (SIN Airport), with minimal interaction
between other airports.

Conversely, EasyJet flights are mostly short and medium-haul and therefore choose
to fly more point-to-point between airports. This creates what more closely resembles
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a ‘connected-network’ (as depicted in Figure 5.1(b)), with flights going in all directions
to connect up a large geographical area (Europe in this case). Although in reality,
networks like this are really just a number of hub-and-spoke networks connected
together. The connectivity and sparsity of the network, shown in Figures 5.2(b)
and 5.3(b) respectively, outlines a reasonably spread out and interconnected network
vastly different from Singapore Airlines.

The 210 transatlantic flights are between 26 US and 42 European airports, flown
from west to east. As a result, the airports can be split into two disjoint sets, the
US departure airports and the European destination airports. In graph theory, a
network of this kind is referred to as a bipartite graph (Figure 5.1(a)). This type of
airline network is not common, rather it is a result of the transatlantic flights being a
fictitious airline company. If it were a real airline company, this network would likely
be interconnected with many domestic flights and a range of different transcontinental
flights. As can been seen from Figure 5.3(a) the connectivity of the flight network is
very sparse. As flights are only going in one direction, there is none of the symmetry
apparent in Figure 5.3(b). As they are ordered by the airport’s longitude, only the
bottom right (corresponding to links between US and Europe) is populated.

Therefore it is clear that the three case studies in question represent a reason-
able representation of today’s flights while having significant distinction to make any
comparisons interesting.

5.4 Method

The motivation behind the use of a geometric approach for routing, as outlined in
Chapter 2, is to enable us to quickly calculate a cost for a potential formation. The
speed of this calculation, for formations of size two, enables over 100, 000 combina-
tions to be assessed in under a minute. Therefore instead of arbitrarily eliminating
combinations, in order to keep the problem tractable, all possible combinations can
be assessed and the costs calculated in a reasonable time. This allows the global prob-
lem, of assigning flights into particular formations, to consider all choices, resulting
in a globally optimal allocation.

The results of this chapter follow the methods of Chapter 2 and uses the two stage
solution process:

• Enumeration: For all possible combinations calculate the optimal route and
corresponding costs.

• Assignment: Given the costs of all combinations, assign and final fleet of for-
mations to fly in order to minimise total cost.

As explored in Section 2.5.2, the number of combinations requiring considera-
tion increases according to the binomial coefficients, larger route lists will result in
exponentially more combinations to consider. The Transatlantic route list and the
Singapore Airlines route list are of a similar length and result in roughly 22, 000 and
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27, 000 combinations respectively. The longer list of EasyJet flights results in a much
larger number of combinations between 870, 000.

In order to impart some restrictions on scheduling a maximum permitted total
change in takeoff times, ∆t, is chosen, as outlined in Section 2.6.4. This restriction
dictates the flexibility of a formation pair to change their takeoff times relative to
one another. Formation pairs needing to change their take off times, in order to
rendezvous at the required time, by a total time greater than ∆t then that formation
combination will not be considered in the assignment stage.

In line with Chapter 2 for formations of size two, a fixed formation discount factor
of 10% will be used in Section 5.5, while later, in Section 5.7, results will be presented
for varying the discount factors between 1 and 20%.

5.5 Results for Formation Discount Factor of 10%

The results for each of the case studies are now presented with the results shown
for an increasing value of ∆t (in minutes), representing the maximum total-allowable
change a formation can make to their take off times.

For lower values of ∆t, there are fewer possible formations to choose from, less
choice results in lower overall savings. The objective function of the MILP is to
minimise total cost (Fuel burn), therefore the only incentive is to minimise other
values, such as deviation, are because they are intrinsically linked to lower costs.

The focus of these results, therefore, is to observe what happens to different values
as the restrictions on the schedule are gradually lifted and the amount of choice of
formations increases, therefore converging towards the unconstrained solution.

5.5.1 Overall Average Formation Saving

The metric which is minimised for in the MILP is the aircraft fuel burn, therefore the
ideal measure of how ‘good’ a formation assignment is, is to measure the fuel saved
as a result of allowing aircraft to fly in formation. This saving, as a percentage, is
shown in Figure 5.4 and Tables 5.4 to 5.6. As this is the objective function of the
entire optimisation, all flights are aiming for a better percentage saving. For no ∆t
constraint the overall average saving for the entire fleets are 8.89%, 1.89% and 6.15%
for Transatlantic, EasyJet and Singapore Airlines respectively.

This shows a clear distinction between the three case studies with Transatlantic
flights saving the most on average and EasyJet saving the least. As an entire fleet
EasyJet’s performance is fairly low, partly due to there being many more flights with
many of them not being ideal for formation. Only around 45% of the flights in the
final assignment are in formation (compared to 80−100% for the other two) and thus
reducing the overall averages slightly.

What is more interesting is how well the saving responds to altering ∆t. There
are obviously very few suitable formations for a zero change in take off times, how-
ever by only allowing even just a ∆t of 30 minutes, the assignments can achieve very
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Figure 5.5: Distribution of Formation Saving (%)

reasonable savings. At around 120 minutes allowable change almost all of the un-
constrained formation saving is achievable. Therefore, simply from an overall saving
view point there needs to be some, but not necessarily a large amount, of flexibility
in the take-off times in order to get most of the fuel saving available from formation
flight.

The spread of formation savings for each case study can be seen in Figure 5.5,
whereby the savings are partitioned into intervals of 0.5% and the proportion which
lie within that partition are counted. There is a clear shape for each case study.
Transatlantic flight savings range all the way up to 9.5% with the majority lying
between 5− 8% and very few with low savings, creating a clear negative skew. Con-
versely, EasyJet flights peak between 0−1% and quickly trail off, reaching maximums
of 5− 6% resulting in a clear positive skew. The Singapore Airlines flights, lie some-
where in the middle, with results spread reasonably evenly across all of 0 − 8.5%.
Therefore what is clear from Section 5.3 and the results of Figure 5.5 is that we have
three reasonably distinct case studies with a range of possible results.
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Figure 5.6: Proportion of aircraft assigned into a formation

5.5.2 Proportion of Flights Joining Formation

For a given assignment, a rough guide of how well the list of flights is suited to
formation flight is the proportion of formations to solo flights. The results for an
increasing ∆t are plotted in Figure 5.6, whereby as an example, a proportion of 75%
means three quarters of the flights are assigned into formation, while the remaining
quarter fly solo. For the transatlantic flights there is a very rapid trend towards all
flights being part of a formation (i.e. 100%). For Singapore Airlines the approach
is more gradual, eventually reaching just over 75%. EasyJet have the lowest of the
three, but levels off fairly quickly at about 45%, however the EasyJet route list is
much larger than the other two at about 1, 300 flights. Therefore, although this
overall proportion really reflects the route list as a whole, with the many hundreds
of short-haul flights within the EasyJet flight list likely bringing down the overall
percentage value, what is more important is the response to the changing ∆t.

5.5.3 Flight Deviations

One of the fundamental drawbacks of formation flight is that aircraft will need to
deviate from their solo routes, flying out of their way in order to rendezvous with
other formation members. The aim being, that any deviation in distance flown will be
compensated for by the drag-reduction formation flight offers. Intuitively, formations
will want to reduce this deviation as it directly effects their overall cost.

The deviation results for the Transatlantic, EasyJet and Singapore Airlines are
shown in Tables 5.1, 5.2 and 5.3 respectively. These tables outline the average and
maximum deviation values for both the total formation and for each individual flight
within a formation. These results are also plotted in Figures 5.7(a) and 5.7(b), show-
ing both the total average deviation in km and as a proportion of the solo distance.

What can be seen is that as the problem becomes less constrained, i.e. as ∆t
increases, the Transatlantic flights quickly move towards lower levels of deviation.
Conversely, EasyJet and Singapore airlines decrease slightly, but mostly remain fairly
constant. As can be further seen from the values outlined in Tables 5.1, 5.2 and 5.3,
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Table 5.1: Transatlantic: Deviation (km) in route distance between formations and
their solo routes.

Formation total Per aircraft
∆t No. Forms Common airport Avg Max Avg Max
0 47 (45%) 11 (23%) 229 (3.3%) 1125 (17.2%) 114 (3.3%) 898 (14.5%)
5 90 (86%) 27 (30%) 183 (2.7%) 838 (14.5%) 91 (2.7%) 838 (14.5%)
10 97 (92%) 28 (29%) 121 (1.8%) 691 (11.3%) 61 (1.8%) 592 (9.6%)
15 100 (95%) 36 (36%) 112 (1.6%) 702 (9.7%) 56 (1.6%) 481 (6.0%)
30 102 (97%) 48 (47%) 86 (1.2%) 485 (6.3%) 43 (1.2%) 424 (6.3%)
60 103 (98%) 50 (49%) 76 (1.1%) 386 (5.3%) 38 (1.1%) 291 (4.6%)
120 104 (99%) 53 (51%) 51 (0.7%) 352 (4.3%) 26 (0.7%) 235 (3.1%)
240 104 (99%) 58 (56%) 40 (0.5%) 451 (5.3%) 20 (0.5%) 356 (3.9%)
Inf 105 (100%) 73 (70%) 27 (0.4%) 317 (3.8%) 14 (0.4%) 184 (2.6%)

Table 5.2: EasyJet: Deviation (km) in route distance between formations and their
solo routes.

Formation total Per aircraft
∆t No. Forms Common airport Avg Max Avg Max
0 37 (6%) 15 (41%) 52 (3.1%) 125 (8.4%) 26 (3.1%) 102 (4.8%)
5 118 (18%) 42 (36%) 54 (3.2%) 239 (10.4%) 27 (3.2%) 152 (6.0%)
10 161 (25%) 63 (39%) 47 (2.8%) 195 (10.7%) 23 (2.8%) 122 (8.6%)
15 177 (27%) 76 (43%) 48 (2.9%) 195 (10.7%) 24 (2.9%) 122 (8.6%)
30 230 (35%) 91 (40%) 47 (2.9%) 195 (10.7%) 23 (2.9%) 143 (8.6%)
60 254 (39%) 106 (42%) 42 (2.6%) 239 (10.7%) 21 (2.6%) 152 (8.6%)
120 287 (44%) 119 (41%) 36 (2.3%) 151 (8.3%) 18 (2.3%) 143 (5.6%)
240 296 (45%) 129 (44%) 34 (2.2%) 143 (6.3%) 17 (2.2%) 143 (5.6%)
Inf 308 (47%) 141 (46%) 31 (2.1%) 109 (5.4%) 16 (2.1%) 73 (3.5%)

Table 5.3: Singapore Airlines: Deviation (km) in route distance between formations
and their solo routes.

Formation total Per aircraft
∆t No. Forms Common airport Avg Max Avg Max
0 3 (3%) 3 (100%) 165 (2.7%) 281 (4.7%) 82 (2.7%) 164 (3.7%)
5 23 (20%) 22 (96%) 135 (1.8%) 560 (5.4%) 67 (1.8%) 560 (4.9%)
10 34 (29%) 33 (97%) 128 (1.9%) 560 (8.5%) 64 (1.9%) 560 (8.5%)
15 43 (37%) 42 (98%) 123 (2.0%) 560 (8.5%) 61 (2.0%) 560 (8.5%)
30 58 (50%) 57 (98%) 98 (1.7%) 515 (8.5%) 49 (1.7%) 515 (8.5%)
60 69 (59%) 68 (99%) 113 (2.0%) 770 (12.5%) 57 (2.0%) 770 (12.5%)
120 79 (68%) 78 (99%) 95 (1.6%) 1082 (12.5%) 48 (1.6%) 1082 (12.5%)
240 88 (76%) 86 (98%) 95 (1.5%) 1289 (10.1%) 48 (1.5%) 1082 (10.1%)
Inf 96 (83%) 93 (97%) 49 (0.7%) 1140 (8.1%) 24 (0.7%) 868 (5.7%)
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(b) Total Average Deviation as a proportion of solo distance

Figure 5.7: Deviation in distance between solo and formation flight

that these levels of deviation are overall very low. Low deviations of 1 − 2% mean
that most flights are not going very far out of their way in order to join in formation.

A linked factor to the level of deviation is whether the flights making up a forma-
tion have a common airport. That is, if they either depart from, or arrive at the same
airport as the other formation member. Clearly if an airport is shared then there
is likely to be a lower level of deviation. The proportion of the assigned formations
who share a common airport are in Tables 5.1, 5.2 and 5.3 with values plotted in
Figure 5.8. Due to the type of network, explored in Section 5.3, Singapore Airlines
flights almost all fly to or from Singapore Changi Airport. EasyJet flights are also
more or less constant at a level of about 40%, while the Transatlantic flights trend
towards about 55%. Finally, while the consistency of the Singapore Airline and Easy-
Jet flights are reflected in the same consistency in the deviation plots of Figure 5.7(b),
the Transatlantic flights move towards lower deviation is matched by the increase in
proportion of common airports.
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Figure 5.8: Proportion of Formations who share a common airport

5.5.4 Utilisation

It is of interest to assess how well an assignment performs when compared to the
maximum it could theoretically achieve. This metric of ‘Utilisation’ was introduced in
Section 2.6.5 and gives an overall value for a list of formations suitability to formation
flight. The values in Tables 5.4, 5.5 and 5.6, plotted in Figure 5.10, show a clear
distinction between the three case studies. The Transatlantic flights can achieve
anywhere up to a very impressive 96% utilisation for increasing levels of ∆t, that is,
out of the 9.3% theoretical-maximum saving achievable, roughly 8.9% was realised.
The EasyJet and Singapore Airlines flights respectively achieve levels of utilisation of
roughly 35% and 75%.

The utilisation factor is a result of a number of different components, such as
geographical suitability and flight distance but importantly dictated by the theoretical
maximum. This theoretical max is calculated based on the entire cruise proportion of
each flight is being in formation. Therefore a higher proportion of cruise to non-cruise
flight, equates to a greater theoretical maximum saving. This proportion plotted in
Figure 5.9 and covered in greater detail in Tables 5.4, 5.5 and 5.6, and is a predefined
constant, based on the solo flight list and so does not change based on assignment.

5.5.5 Summary

The results of this Section show a range of values and their interaction between
the allowable change in take off times ∆t. As the constraint is gradually lifted,
values tend towards their unconstrained ideal. It is clear from Section 5.5.1 that even
with a relatively low ∆t of 30 minutes, formations can still achieve very reasonable
savings. While Section 5.5.3 shows a general tendency to move towards lower levels
of deviation (with Transatlantic flights being the most effected), this corresponds
to more formations sharing a common airport. Finally the Utilisation factors of
Section 5.5.4 show that the Transatlantic flights are the best suited to formation,
followed by Singapore Airlines and then by the EasyJet flights. With the proportion
of cruise to non-cruise flight being a major contributor.
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Figure 5.9: Average proportion of cruise to non-cruise flight
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Figure 5.10: Utilisation

Table 5.4: Transatlantic: Proportions of flight at cruise and corresponding utilisation
factors

Aircraft Cruise % Fleet Utilisation
∆t Min Avg Max Saving Theoretical Max Utilisation (%)
0 84 93 95 2.83 9.3 30.6
5 84 93 95 5.89 9.3 63.6
10 84 93 95 6.85 9.3 74.0
15 84 93 95 7.35 9.3 79.4
30 84 93 95 7.92 9.3 85.5
60 84 93 95 8.17 9.3 88.2
120 84 93 95 8.64 9.3 93.3
240 84 93 95 8.71 9.3 94.1
Inf 84 93 95 8.89 9.3 96.0
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Table 5.5: EasyJet: Proportions of flight at cruise and corresponding utilisation
factors

Aircraft Cruise % Fleet Utilisation
∆t Min Avg Max Saving Theoretical Max Utilisation (%)
0 0 52 90 0.12 5.2 2.3
5 0 52 90 0.51 5.2 9.8
10 0 52 90 0.72 5.2 13.9
15 0 52 90 0.88 5.2 16.9
30 0 52 90 1.17 5.2 22.5
60 0 52 90 1.40 5.2 26.9
120 0 52 90 1.63 5.2 31.2
240 0 52 90 1.76 5.2 33.6
Inf 0 52 90 1.89 5.2 36.1

Table 5.6: Singapore Airlines: Proportions of flight at cruise and corresponding util-
isation factors

Aircraft Cruise % Fleet Utilisation
∆t Min Avg Max Saving Theoretical Max Utilisation (%)
0 0 82 97 0.05 8.2 0.7
5 0 82 97 1.28 8.2 15.6
10 0 82 97 2.18 8.2 26.5
15 0 82 97 2.52 8.2 30.7
30 0 82 97 3.50 8.2 42.5
60 0 82 97 3.92 8.2 47.7
120 0 82 97 4.70 8.2 57.1
240 0 82 97 5.19 8.2 63.2
Inf 0 82 97 6.15 8.2 74.8
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5.6 Spread of Results

The results of Section 5.5 look at summarising values for a collection of results, i.e.
averages, maximum, minimums for an assignment of formations. The focus now shifts
towards how multiple results interact within an assignment. For the optimal assign-
ments, based on a ∆t of 30 minutes, for the Transatlantic, EasyJet and Singapore
Airlines some results are plotted in Figures 5.11 to 5.13. Each point on these graphs
correspond to an assigned formation, with the location representing the relationship
between the saving percentage and some other chosen variable.

Looking solely at the x-locations, i.e. the formation saving, one sees the same pat-
tern that is observable in Figure 5.5. That is, the Transatlantic flights are negatively
skewed towards the higher percentage saving, the EasyJet skew positively towards
the lower savings and the Singapore Airlines flights spread more evenly across the
entire range. The results of this section aim to explore what is the main impacting
factors on these formation savings.

First observing the relationship between cruise proportion (discussed in Section 5.5.4)
and saving, plotted in Figure 5.11 clearly shows a positive trend towards higher saving
through a higher proportion of cruise flight. While, for the higher levels of saving,
proportions of 80 − 90% are required, there are formations with that level of cruise
proportion achieving much lower savings.

Secondly Figure 5.12 shows percentage saving against the solo formation distance.
Solo distance has not yet been directly discussed in this Chapter as it is more an
input than a result, however, it has been an aspect which has direct effect on the
cruise proportion and deviation. While this spread of results, shows a general trend
towards higher saving along with a higher solo distance, what it really shows is that
there is more of a barrier to higher percentage savings. Formations likely need to
be longer than 4000 km to achieve savings over 6%, which in turn would mean a
cruise proportion likely above 80%. Conversely, longer flights do not guarantee higher
savings percentages, as there are many flights achieving 6−7% which are substantially
longer than those with 9%.

Finally the relationship between proportion of deviation and the saving percentage
is plotted in Figure 5.13. There is a clear spread, showing that formations with a
high proportion of deviation likely result in lower savings, however there is less of an
overall trend.

What will be shown in Sections 5.6.1 and 5.6.2 is that these spread can be quanti-
fied using correlation coefficients in order to assess which variables have more impact
on saving percentages.

5.6.1 Correlations

We now consider the implications of dependence on seemingly random variables
through the comparison of correlation coefficients. Using the same values mentioned
throughout this Chapter, such as saving, deviation and flight distance, we aim to
measure the statistical relationships between them.
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Figure 5.11: MILP ∆t = 30: Cruise proportion against saving. Correlation: Transat-
lantic = 0.67, EasyJet = 0.74, Singapore Airlines = 0.82
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Figure 5.12: MILP ∆t = 30: Solo distance against saving. Correlation: Transatlantic
= 0.07, EasyJet = 0.70, Singapore Airlines = 0.70
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Figure 5.13: MILP ∆t = 30: Deviation proportion against saving. Correlation:
Transatlantic = -0.79, EasyJet = 0.01, Singapore Airlines = -0.16
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First the correlation coefficients are defined by the Pearson product-moment cor-
relation coefficient for a population (i.e. this is not a sample as all the values and
known). For two variables X and Y , with covariance Cov(X, Y ) and standard devi-
ations σX and σY this is defined as:

ρX,Y =
Cov(X, Y )

σXσY
. (5.1)

This value ranges between +1 and −1 inclusive, with 1 meaning a total positive cor-
relation, 0 no correlation and -1 total negative correlation. The stronger a correlation
(i.e. the higher the absolute value), the stronger the dependence between the two
variables. That is, a 0 correlation means two variables are more or less independent
(or at least act randomly). A strong positive correlation means that an increase in X
will likely result in an increase in Y , while a strong negative correlation would mean
an increase in X would likely result in a decrease in Y .

5.6.2 Cross Correlation

With this idea in mind it is interesting to observe how particular variables correlate
to each other, this is accomplished using a ‘cross-correlation plot’. This kind of plot
is a grid of cells, each column and each row corresponds to a particular variable, then
each cell contains the correlation value between each row and column variable. For
additional clarity, a circle, with radius proportional to the correlation, is plotted. The
plots of Figures 5.14, 5.15 and 5.16 depict the cross-correlation of a number of chosen
variables. There are five variables considered for comparison:

• Saving pc - The percentage saving against solo flight;

• Cruise prop - The proportion of the flight at cruise;

• Distance - The solo flight distance;

• Deviation - The deviation in distance between solo and formation flight;

• Time diff - The total difference in take off time required.

The cross correlations are calculated for each of the three case studies and for two
sets of formations (Figures 5.14, 5.15 and 5.16). Firstly for the optimally-assigned
solution formations for a ∆t of 30 minutes; secondly for the list of all possible for-
mations (unassigned) which are favourable (i.e. those that produce a saving). The
reason for including results for both is to see if formations chosen by the assignment
process differ greatly from the overall ‘population’.

5.6.3 Results

There are similarities observable between all three of the case studies.
Firstly there is almost no correlation between the time difference required for

scheduling the formations and any other parameter. Therefore the ∆t constraint

118



−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

S
a
v
in

g
_
p
c

C
ru

is
e
_
p
ro

p

D
is

ta
n
c
e

D
e
v
ia

ti
o
n

T
im

e
_
d
if
f

Saving_pc

Cruise_prop

Distance

Deviation

Time_diff

1

0.73

−0.25

−0.78

−0.18

0.73

1

−0.33

−0.7

−0.27

−0.25

−0.33

1

0.49

0.3

−0.78

−0.7

0.49

1

0.21

−0.18

−0.27

0.3

0.21

1

(a) Unassigned

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

S
a
v
in

g
_
p
c

C
ru

is
e
_
p
ro

p

D
is

ta
n
c
e

D
e
v
ia

ti
o
n

T
im

e
_
d
if
f

Saving_pc

Cruise_prop

Distance

Deviation

Time_diff

1

0.67

0.07

−0.79

0

0.67

1

0.05

−0.63

0.06

0.07

0.05

1

0.27

−0.04

−0.79

−0.63

0.27

1

−0.02

0

0.06

−0.04

−0.02

1

(b) MILP ∆t = 30

Figure 5.14: Cross correlation of Transatlantic Case Study

used is essentially a random filter on the possible formations. This is an interesting
conclusion, as discussed in Section 5.4, limiting the allowable change to the schedule
is really just restricting ‘choice’ and results in lower overall savings. What this shows
is that while this restriction is random and makes sense to include it, there is little
that can be done to plan for it.

Secondly the correlation between saving and cruise proportion for the assigned
formations, is 0.67, 0.74 and 0.82 for the Transatlantic, EasyJet and Singapore Air-
lines respectively. This implies that flights which spend a greater proportion of their
flight in cruise will likely result in a greater percentage saving. This intuitively makes
sense, from the discussion in Section 5.5.4, that in order to get a better theoretical
maximum, a larger proportion of cruise is needed.

Finally when comparing within each case study, the unassigned formations to
those which are assigned for a ∆t of 30 minutes, there is minimal change. The same
conclusions about the correlations can be made for both the assigned and the unas-
signed results. At most, the changes are around 0.2 in either direction, mainly shifting
those from minimally-correlated to totally-uncorrelated and vice versa. Importantly,
what this implies is that these correlations are mostly a feature of the case study and
not the assignment process.

Looking just at the transatlantic flights (Figure 5.14) what is initially clear, but
can also be observed in the spread of Figure 5.13,is the strong correlation between
percentage saving and deviation at −0.79 (−0.78 for the unassigned). Thus, flights
with a greater deviation likely result in a lower saving as there is strong negative
correlation. Conversely, what is also observable is that there is very little correlation
(0.01) between the saving and the solo distance for the Transatlantic flights. As all
the flights are long-haul, distance does not act as a distinguishing feature between the
formations. Therefore, given the list of unassigned Transatlantic flights formations
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Figure 5.15: Cross correlation of EasyJet Case Study
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Figure 5.16: Cross correlation of Singapore Airlines Case Study
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one could predict the formations with the best saving percentage using the other
four variables using these correlations. One should pick those formations with low
deviations and high cruise proportion and can effectively disregard the other variables.
Interestingly what we will see is that this is not the case for EasyJet and Singapore
Airlines.

The EasyJet and Singapore Airlines correlations present in very similar ways
(with some values almost identical) but there is clear and drastic change from the
Transatlantic. Firstly formation distance, which has had almost no correlation for the
Transatlantic flights (0.07), has a strong positive correlation to saving percentage for
EasyJet (0.7) and Singapore Airlines (0.7), which is also observable in Figure 5.12.
This is likely due to the larger variety of flight distances within the flight list compared
to the Transatlantic flights. EasyJet have shorter flights, both short and medium-
haul, linking back to the discussion on flight distance and utilisation in Section 5.5.4.
Shorter flights, inherently mean a lower proportion of cruise flight available for for-
mation and thus less savings achievable. Therefore flight distance becomes more of a
distinguishing factor within a diverse list of formations.

There is also a change in the correlation between saving and deviation. Deviation,
which has a strong negative correlation for the Transatlantic flights (−0.79), now has
almost no correlation for the EasyJet (0.01) and Singapore Airlines (−0.16) flights.
As can be seen in Figure 5.7 and Tables 5.1, 5.2 and 5.3 the EasyJet and Singapore
Airlines flights have a much higher level of deviation present than Transatlantic.
Thus, as most flights have a reasonable amount of deviation, this becomes less of a
differentiating feature between formations.

Therefore if given a more diverse range of flights lists such as the EasyJet and
Singapore Airlines flight the indicators of formations with potentially high percentage
savings are different from that of the Transatlantic flights. One should aim for flights
which have a longer solo distance, as they will be able to offset achieve higher cruise
proportions and thus more savings.

5.7 Results for Differing Formation Discount

Throughout this Thesis, for formations of size two, a fuel saving discount of 10% has
been assumed when flying in formation. However, due to this value only being an
estimate, based on a variety of aerodynamic models and flight tests [18,19,60,63], it
is of interest to observe what effect this value has on the overall saving.

Therefore, we now look at the routing and assignment results for the three flight
case studes, for the problem with no scheduled constraints (i.e. ∆t =∞). The results
for an increasing formation discount factor, as a percentage, between 1 and 20%, are
now presented. For clarification, let us first define the formation discount (λ̂f ) as
the percentage of fuel-saving applied during the formation stage of flight. This value
relates to the value λf of Chapter 2 by λ̂f = 100 × (1 − λf ), and is essentially the
same value expressed as a percentage.

Lower values of F∆, mean a lower level of incentive for flying in formation, while
higher levels increase this incentive. The focus of these results, therefore, is to observe

121



0 2 4 6 8 10 12 14 16 18 20
0

2

4

6

8

10

12

14

16

18

20

Proportional Discount Factor (%)

T
ot
al

S
av
in
g
A
ga
in
st

S
ol
o
(%

)

Transatlantic EasyJet SingaporeAirlines

Figure 5.17: Relation between discount factor and overall saving achieved

what happens to different values as incentive for flying in formation is increase or
decreased, with the same measures, as outlined in Section 5.5 being looked at.

5.7.1 Overall Average Formation Saving

The overall objective is to minimise cost, which is analoguous to maximising saving,
therefore all flights are aiming for the best percentage saving they can achieve. The
overall saving, as a percentage, against solo flight is shown in Figure 5.17. A range
of possible saving are present in the results for differening λ̂f , with the same general
ordering of Transatlantic doing ‘best’ followed by Singarpore Airlines and the EasyJet.
What is important to observe in these results is the shape of the curve, and the
response to an increase/decrease in λ̂f . The results for the Transatlantic show a

stronger linear-relationship between λ̂f and overall saving, while the other two have
more of an offset with less of direct response.

5.7.2 Proportion of Flights Joining Formation

The suitability of a list of flights for formation flight can be shown by the proportion
of formations to solo flights. The results of Figure 5.18, shows that the Transatlantic
flights are highly suited to formation flight, even for very low discount factors. While
the Singapore Airlines grows to around 80%, the proportion begins very low and
shows a level of unsuitability for λ̂f less than about 5%. Finally, the growth for the
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Figure 5.18: Proportion of aircraft assigned into a formation

EasyJet flights is very steady, almost linear, between 1 and 20% but for much lower
proportions, with many unsuited to formation flight.

5.7.3 Flight Deviations

The deviation results for the Transatlantic, EasyJet and Singapore Airlines are plotted
in Figures 5.19(a) and 5.19(b), showing both the total average deviation in km and
as a proportion of the solo distance.

What can be obeserved is that while deviation should be incentivesed by greater
levels of λ̂f , the levels of deviation do not change by much. The results, in Fig-

ure 5.19(b), for EasyJet are more interesting, where low λ̂f means only a small devi-
ations are economical, but as it increases so too does the ‘freedom’ to change course
and fly in formation, as greater savings are available.

Strongly linked to the level of deviation is proportion of flights with a common
airport. The proportion of the assigned formations who share a common airport are
plotted in Figure 5.20. While Singapore Airlines flights almost all fly to or from
Singapore Changi Airport. EasyJet and Transatlantic flights move towards a greater
proportion of shared airports as λ̂f increases. As a result, with the number of shared
airports increasing and the level of deviation remain more constant, the deviations
must therefore be shifted to the joining or the breaking section of the flight. That is,
formations taking off from the same airport likely have destinations which are further
apart (and vice-versa)

5.7.4 Utilisation

Finally the level of utilisation depics the effeciency of the overall formation process.
The results plotted in Figure 5.21, between the three case studies, show a general
tendancy towards higher utilisation for higher levels of λ̂f . The Transatlantic flights

quickly achieve very high utilisation levels. The Singapore Airlines require a λ̂f of
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Figure 5.19: Deviation in distance between solo and formation flight
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Figure 5.20: Proportion of Formations who share a common airport
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Figure 5.21: Utilisation

roughly 18% before they reach a level of 80% utilisation. While, EasyJet flights more
gradually approach more modest levels of up to 50% for λ̂f = 20.

The results of this Section show the effect of altering the formation discount
factor λ̂f . While it is clear that greater discount factors generally result in higher

overall savings, the relationship is not entirely one-to-one. While the value for λ̂f
has been estimated anywhere between 1 and 20% the results of this section show the
direct result on formation savings and further that the overall routing and assignment
methods can be used to assess these kinds of changes.

5.8 Summary

This Chapter has explored the results of applying the methods outlined in Chapter 2
to three distinct case studies consisting of a list of solo flights. The Transatlantic
routes consisted entirely of long-haul flights flying east from the US to Europe, the
EasyJet routes were based in Europe and either short or medium-haul, while the
Singapore Airline routes ranged from medium to super-longhaul flights, all across
south-east Asia.

Firstly a graph-theoretic approach was used to compare the network design of
the flight lists. Where respectively the Transatlantic, EasyJet and Singapore Air-
line flights resembled biparte, more-connected and star-shaped networks. This along
with a discussion on the geographic locations and typical flight lengths of the routes
demonstrated the large difference apparent within commercial flight networks.

The results of running the routing and assignment of all formation combinations
for each case study were then explored. Firstly for a scheduling restriction, placed on
the total allowable difference in takeoff time required to meet in formation, gradually
lifted showed how values tended towards the globally unconstrained optimum. Overall
average percentage savings were promising for all the flight lists, with Transatlantic
performing best at close to 9%, followed by Singapore airlines at just over 6%, while
EasyJet flights produced a savings just under 2%, showing that there is real potential
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even for the short-haul flights.
A general measure of ‘suitability for formation flight’ called utilisation was also

used, to give a real indication as to those flight lists which are much better suited
for formation flight. Particularly high levels (95%) of utilisation were shown for the
Transatlantic routes; slightly less (75%) for Singarpore Airlines; and reasonably low
levels (35%) for the EasyJet flights.

An analysis of the correlations between a number of key values showed what
features were needed to produce ‘good’ formations. While for the Transatlantic flights
low levels of deviation were important, generally indicating better savings. Conversly
for the EasyJet and Singapore flights it was important to have a longer solo flight
distance with the shorter flights performing worse than those which were longer.
Intersting it was shown that the scheduling constraint was entirely uncorrellated to
formation saving, acting more or less like a random filter, removing potential choices
within the assignment stage.

Finally the results for a range of possible formation discount factors between 1
and 20% was explored. Results showed the close relationship between fuel saving and
different values of λ̂f . Furthermore, while deviation was more incentivised for higher

levels λ̂f , the average deviations did not greatly increase, instead formations shifted
towards sharing airports and leaving all their deviations to one end of the formation
route.
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Chapter 6

Door To Door Routing For Road
and Air

6.1 Introduction

One of the main goals set in 2011 by the Advisory Council for Aeronautics Research in
Europe (ACARE) is for 90% of travellers within Europe to be able to complete their
journey, door to door, within 4 hours [31]. The work of this Chapter is to develop
software capable of calculating door-to-door journeys, including air and road travel
within Europe, with the aim of assessing how feasible reaching this 4 hour target is.

6.2 Problem Statement

Given the current road and air transport network how can it be improved in order
to best serve an ever growing population? For a particular start and finish location,
what should the journey be to get between them, given the objective of minimizing
some cost function (Time, money, emission etc.), look like? A few main questions
arise:

• Should one fly, drive or get public transport?

• What and where are the current bottlenecks?

• Can overall journey times be improved by

– Reducing check in/out times?

– Reducing flight times?

– Adding new flight routes?

– Adding new airports?

– How well connected are particular cities?
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The following sections outline the work undertaken by the author during an Airbus
placement between April & September 2013. The work involves building a framework
to attempt to answer some of these questions. This chapter will begin by first outlining
the data available and the data needed to analyse. A description of the Routino
routing software and how it can be used for this problem will be discussed in first in
section REF. and then a method for creating a road, airport and flight network will
be added. Finally the newly adapted software is used to create results for Europe
which will then be discussed. Finally it is important to note that while scheduling is
always important when undertaking any journey, the work of this Chapter does not
attempt to deal with any scheduling aspects of the driving and flying, that is, it is
assumed that a flight departs a fixed time after the passenger arrives at the airport
regardless of the time of day.

6.3 The Current State of the Data

In order to sufficiently understand how routes work on a global scale, a vast amount of
data is required. An ongoing open-source project called Open Street Map [2] enables
us to freely access a large amount of the data neccessary. The data is crowd-sourced,
allowing for individual users to update and correct information for their geographical
location. Thanks to a large online community of these dedicated ‘mappers there is a
huge amount of information freely and easily available. The open source nature of the
project also helps to incentivize these people to develop a wide array of software and
tools to help harness the power of this data. In particular a piece of software called
Routino ( [17]), has been used, with a large proportion of the work of this Chapter is
directed at adapting this software to allow for the calculation of door to door routes.

6.3.1 OpenStreetMap Data

OpenStreetMap (OSM) data comes in a bespoke XML format, which is lightweight
yet powerful. Every single point of data on an OSM map is comprised of a node, with
a unique id, latitude and longitude for example

<node id=’354’ lat=’-0.2204’ lon=’-0.5159’/>

This node could be part of road, a phone-box or even a windsock on an airstrip.
In addition to the basic node information, tags are used, which can be used to add
details such as what the node represents, or other important attributes. The tag is
comprised of a key k and value that key takes, v, for example

<tag k=’barrier’ v=’bollard’ />

<tag k=’junction’ v=’roundabout’ />

There are hundreds of different types, all of which are well documented within the
OSM wiki [2]. These nodes are then further classified into ‘relations’ and ‘ways’. A
relation consists of one or more tags and an ordered list of one or more nodes and/or
ways as members, these are used to define logical or geographic relationships between
other elements. A way is an ordered list of nodes which normally has at least one
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tag or is included within a relation. A way can comprise anything between 2 and
2000 nodes and can be open or closed loops. Ways are mainly things like roads and
pathways, but can also be used to define an area, such as a park or grounds. For
example a simple residential street called ‘Clipstone Street’ is represented as follows

<way id=’3205’>

<nd ref=’3155’ />

<nd ref=’3162’ />

...

<nd ref=’3122’ />

<tag k=’highway’ v=’residential’ />

<tag k=name v=Clipstone Street/>

</way>

This way, is therefore simply a number of nodes, in order, representing points on
the ‘residential highway’ known as ‘Clipstone Street’. Each included node, is defined
elsewhere and can be easily looked up to find its details such as latitude and logitude
location.

6.3.2 OSM Files

All the data Open Street Map holds is publicly available to download. It can be
downloaded in a few different file types and for varying parts of the world. The
largest file is ‘planet.osm’ which is more or less all the data available, it is around
40GB compressed and over 550GB uncompressed. Moreover there are update files
published daily which contain any changes made so as to keep the data as up to date
as possible.

6.3.3 Flight Route Data

Flight data is readily available but in a different standard to the OSM data. Although
lists of common flight routes can be easily sourced it is important to use accurate and
up to date data. Therefore OAG data is chosen to represent all the flight routes
for door to door routing. This data contains information on a huge list of flights,
including times, dates and geographical routes flown. In total the flight data consists
of 2, 776 airports, with 12, 839 direct flights between, roughly two thirds international
and one third domestic.

Although not as in depth or complex as the OSM data, this list of routes is
sufficient for creating a framework for door to door routing. In Section 6.4.2 this
data will be converted into a format which is compatible with the OSM data, and the
routing software.

6.4 Routino Routing Software

Open source projects such as OSM have a tendency to encourage open source com-
munity made software. OSM has a large range of tools and software built to try and
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make sense of such a vast amount of data. In particular there is a number of software
packages designed for optimally routing. They run on a variety of platform and come
at the problem from different points of view. Our focus is on one particular project
called Routino.

6.4.1 Routino Base Software

Routino is an application written primarily in C, designed to route between two points
using the dataset of topological information contained within OSM. The router uses a
routing algorithm which takes an OSM format of data as input and calculates either
the shortest of quickest route between two (or more) points. Built upon this is a
pre-processing stage which attempts to create a database of cleaned data and super-
routes in order to route more efficiently. One of its key features is the ability to route
for a number of different transport types such as car, motorcycle, horse, foot and even
wheelchair. It is able to do this using the notion of a profile. Each transport type
has an individual profile which defines both speed and preference for every type of
highway. For example for a car

<speed highway="motorway" kph="112" />

<speed highway="residential" kph="48" />

<speed highway="path" kph="0" />

<speed highway="steps" kph="0" />

So a car can travel 112 kph on a motorway, 48 kph on a residential road but not at
all on a path or steps. If traveling by foot, however, one can reach a modest 4 kph on
a path or steps but are not allowed on a motorway. In a similar way preferences are
defined in an attempt to order a passengers want to take a certain type of highway.
For example for a cyclist

<preference highway="cycleway" percent="100" />

<preference highway="path" percent="90" />

<preference highway="steps" percent="0" />

The notion of percent here means that the cost of going 1 km of a cycleway is the
same as going 1/0.9 = 1.11 km on a path, so you would be happy to travel a little
further on a cycleway if it meant avoiding a path. Furthermore there is an option
to allow the forcing of one-way roads, cars must obey one-way, but someone of foot
wouldnt. The real bonus to having profiles is that these can be changed rapidly, as
an input to the software. So you can quickly get a number of different routes, for
example one that tries to avoid motorways or one that opts for shortest rather than
quickest. You can see how a route changes by perturbing certain inputs so you can
see how a route might change if the speed was increased on secondary roads.

6.4.2 Adaption for Road and Air

The routino software is an ideal solution for routing for a global road network, but
how do we adapt this to take into account possible flights? An initial exploration into
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keeping the road and air network separate showed that such a decentralized approach
lead to problems, so it quickly became apparent that a more centralized approach was
needed. The idea is to build upon the routino software to allow the routing of flights
and road simultaneously. The format in which OSM data comes is very different from
OAG, therefore is necessary to first join them together.

6.4.2.1 Flight Data Schema

Firstly the data contained within OAG needs to be converted into the same XML
schema as OSM. Therefore everything needs to be defined as either nodes, ways or
relations. You can imagine how a flight might look, just like a road highway connection
but using a series of great circle way points.

6.4.2.2 Design Considerations

Having the geographical location of a flight route is only the start of the process.
Flights have a number of timing costs and restrictions inherent to them. So it is
important to not only account for a variety of constraints but also be able to change
them on the fly to see how they may affect how we route. Therefore the following
need to be taken into account:

• Flight routes (departure and destination airport)

• Flight types (short, medium, long haul)

• Flight speeds for each flight type

• Climb profile and speed associated

• Descent profile and speed associated

• Check in / out times both domestic and international

• Taxi in / out times

• Transfer times between combinations of domestic and international flights

In order to account for all of the above we must now create an airport network that
can facilitate both the kinds of flow through it and the times associated. That is a
path where you are forced to flow in the correct way, for example:

Road→ check in→ taxi out→ climb→ cruise→ descend→ taxi in→ check out→ Road

Or maybe a flight connection is made and you would then:

...descend→ taxi in→ transfer→ taxi out→ climb...

It is very important to make sure these flows are followed in order to adequately
model each route.
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6.4.2.3 New Highway Types

In compliance with the OSM and Routino scheme we create a set of new highway
types to go alongside the existing ones. Each of these new highway types will have
a default speed and preference assigned to it and allocated for each profile. These
highway types are:

Highway Name Description Example Speed / Time
Check In Overhead to get to check in 15 mins
Check In Domestic Bag check / security 60 mins
Check In International Bag check / security 120 mins
Check Out Domestic Collect bag / security 30 mins
Check Out International Collect bag / security 60 mins
Taxi Out Gate to runway 15 mins
Taxi In Gate to runway 15 mins
Transfer Int-¿Int Make a connection 30 mins
Transfer Int-¿Dom Make a connection 60 mins
Transfer Dom-¿Int Make a connection 60 mins
Transfer Dom-¿Dom Make a connection 30 mins
Flight Short Climb Take off and climb 400 kph

Along with these new highway types, new profiles are created to account for the
ability to drive and fly.

Flight Type Distance
Short Less than 1200 km
Medium Between 1200 and 4000 km
Long Greater than 4000 km

6.4.2.4 Airport Network Design

For each of the 2276 airports contained in the OAG data an artificial airport layout
must be created. With one route in, the entrance, and two routes out, an international
or domestic flight. With the above defined new highway types we can create a flow
diagram to represent how passengers should flow within an airport.

The above outlines an airport flow. The arrows represent the way passengers are
permitted to travel around the airport. This creates a minimal yet robust method
for routing through an airport. Each dot represents a node, while each arc represents
a way. Each arc section of the graph has predefined distance, so, given a duration to
traverse each arc a speed can also be calculated. For example the taxi out arc might
be 100 meters, and we may define it to take 15 minutes to taxi out. To simulate this,
we set the speed across the taxi out arc to be 0.1/0.25 = 0.4 kph.

Lastly once all the airports have been created, the flight routes between them can
also be plotted. We define the climb distance to be 200 km and descend distance to
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Figure 6.1: Airport as a network flow

be 250 km. For flights which are less that 450 km we define the climb to be 40%, the
cruise 30% and the descent 30% of the total great circle distance.

6.4.2.5 Combining Road and Air Data

With the general outlay in place for creating airports and flight routes we can now
use them. Using a Matlab script we can loop through the OAG dataset and create
a file containing all the airports and flight routes in the OSM format. The script
assigns unique ids to the new nodes it creates and joins them together into ways.
The node placement is important, as the distance between arcs must be consistent
across the entire globe. Therefore it uses an inverse distance function to determine
the longitude and latitude of each new airport node based on the location of the
last. Flight routes are then created by plotting a selection of points part-way along
the great circle route. Although many flights will not directly fly great circle, it is
a reasonable estimate. The method does, however, leave room to plot and calculate
actual flight paths. For example it might be beneficial to implement NAT tracks in
future. The last part of the data puzzle involves joining the two distinct data files
together. Not just computationally, we must physically join these airports to the road
network as the router will not jump between. Therefore it is necessary to lookup,
for each airport, and connect it to the nearest accessible road network. For lack of a
better method we use a web service called overpass-api (http://overpass-api.de) which
allows nice api calls to collect OSM data. It is also useful as it allows a multitude of
parameters so you can tailor the output you return (so as not to download excessive
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amounts of unnecessary data). All we are looking for is the node id of a nearby major
road (residential and service roads are often used within airport boundaries and not
connected with the outside road network). The process goes something like this

Input: location of the airport

> Create a bounding box around the airport

> Call overpass-api for the major roads in that box.

> Strip out unwanted data

> Find the nearest node,

> return node id

With this node id we can just assign it to a new airport connection way and then
we will be able to route from the road into the airport and beyond.

6.4.2.6 PlanetSplitter

The Routino software includes an executable called planetsplitter which is used to
parse the raw OSM data into a cleaned and structured format for the router to
understand. This is done by calling it with command line arguments as follows

./planetsplitter --dir=data --prefix=EU --parse-only ’/Airport_routes.osm

./planetsplitter --dir=data --prefix=EU --parse-only --append /Europe.osm.pbf

./planetsplitter --dir=data --prefix=EU --process-only

This saves the processed files, prefixing them with EU and saves them to the
location data. Once this is complete there will be a folder consisting of four files:
Nodes, Relations, Segments and Ways. These are structured and will be called when
using the router.

6.4.3 Router

The main program performs the actual calculation of optimum routes using the
database generated by the PlanetSplitter program. It can take a number of dif-
ferent inputs but essentially it takes the input of two (or more) locations and the
profile to use and returns the optimal route. General Inputs The following are some
of the inputs that the router needs (although many are optional) in order to run.

--dir=<dirname>

Sets the directory name in which to read the local database. Defaults to the current
directory. -

-prefix=<name>

Sets the filename prefix for the files in the local database. Defaults to no prefix.

--profiles=<filename>

Sets the filename containing the list of routing profiles in XML format.

--translations=<filename>
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Sets the filename containing the list of translations in XML format for the output
files.

--exact-nodes-only

When processing the specified latitude and longitude points only select the nearest
node instead of finding the nearest point within a segment (quicker but less accurate
unless the points are already near nodes).

--loggable

Print progress messages that are suitable for logging to a file; normally an increment-
ing counter is printed which is more suitable for real-time display than logging.

--quiet

Don’t generate any screen output while running (useful for running in a script).

--language=<lang>

Select the language specified from the file of translations.

--output-html

--output-kml-route

--output-csv-route

--output-text

--output-text-all

Generate the selected output file formats (HTML, KML route file, CSV route, plain
text route and/or plain text with all nodes). If no output is specified then all are
generated, specifying any automatically disables those not specified.

--output-none

Do not generate any output (and therefore do not read in any translations files).

--profile=<name>

Specifies the name of the profile to use.

--transport=<transport>

Select the type of transport to use, ¡transport¿ can be set to Foot, HGV, Car etc.
Some transports (such as car, foot, motorcycle, will allow the use of flights unless
specified otherwise. Transports such as HGV, PSV, horse are by default road only.

--shortest

Find the shortest route between the waypoints.

--quickest

Find the quickest route between the waypoints.

--lon1=<longitude>, --lat1=<latitude>

--lon2=<longitude>, --lat2=<latitude>

...

--lon99=<longitude>, --lat99=<latitude>
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The location of the waypoints that make up the start, middle and end points of
the route. Up to 99 waypoints can be specified and the route will pass through each
of the specified ones in sequence. The algorithm will use the closest node or point
within a segment that allows the specified traffic type.

6.4.3.1 Specific Speed and Preference Inputs

Specific Speed and Preference Inputs The following are used when not the default in
the above input files (profiles for example contains much of this).

--highway-<highway>=<preference>

Selects the percentage preference for using each particular type of highway.

--speed-<highway>=<speed>

Selects the speed limit in km/hour for each type of highway. Default value depends
on the profile selected by the –transport option.

--property-<property>=<preference>

Selects the percentage preference for using each particular highway property The
value of ¡property¿ can be paved, bridge, multilane etc. Default value depends on the
profile selected by the –transport option.

--oneway=[0|1]

Selects if the direction of oneway streets are to be obeyed (useful to not obey them
when walking). Default value depends on the profile selected by the –transport option.

--turns=[0|1]

Selects if turn restrictions are to be obeyed (useful to not obey them when walking).
Default value depends on the profile selected by the –transport option.

--weight=<weight>

Specifies the weight of the mode of transport in tonnes; ensures that the weight limit
on the highway is not exceeded (important if routing for HGVs or PSVs). Default
value depends on the profile selected by the –transport option.

--height=<height>

Specifies the height of the mode of transport in metres; ensures that the height limit
on the highway is not exceeded. Default value depends on the profile selected by the
–transport option.

--width=<width>

Specifies the width of the mode of transport in metres; ensures that the width limit
on the highway is not exceeded. Default value depends on the profile selected by the
–transport option.

--length=<length>

Specifies the length of the mode of transport in metres; ensures that the length limit
on the highway is not exceeded. Default value depends on the profile selected by the
–transport option.
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6.4.3.2 Example Usage

The following give an outline of scenarios where the inputs may vary. Many of the
possible inputs have either a default value or are specified in a profile file unless
otherwise stated.

Example 1
A car journey between Bristol and Glasgow, that takes scenic route (i.e avoids major
roads) and only travels at a reasonable speed or 80 kph.

router --dir=data --prefix=EU --transport=motorcar --quickest \

--lat1=51.48 --lon1=-2.57 --lat2=55.86 --lon2=-4.23 \

--highway-motorway=0 --highway-trunk=0 \

--speed-primary=80 --speed-secondary=80

Example 2
A car journey between Bristol and Glasgow, with a preference towards flying rather
than driving

router --dir=data --prefix=EU --transport=motorcar --quickest \

--lat1=51.48 --lon1=-2.57 --lat2=55.86 --lon2=-4.23 \

--highway-motorway=20 --highway-trunk=20 --highway-primary=20 \

Example 3
A car journey between Bristol and Bucharest which avoids medium / long haul flights

router --dir=data --prefix=EU --transport=motorcar --quickest \

--lat1=51.48 --lon1=-2.57 --lat2=44.42 --lon2=26.091702 \

--highway-flight_medium_climb=0 --highway-flight_long_climb=0 \

--highway-flight_medium_cruise=0 --highway-flight_long_cruise=0 \

--highway-flight_medium_desc=0 --highway-flight_long_desc=0 \

Although in this case you would only need to restrict the climb part of the flight to
be 0 (as it will never use it), it is good practice to assign all of them. If the preference
was non-zero them all of the associated highways would need to be adjusted. For
example if your preference was only 20% for long flights then you would need to set

highway-flight_long_climb, highway-flight_long_cruise=20 and highway-flight_long_desc

equal to 20.

6.4.4 Output Files

As described above, routino is capable of produces a range of output files. Most of
these are just the same result data but structured differently. For example the CSV
file is just the text-all file but separated by commas. The size of the files depend
greatly on the complexity of the route. Moreover driving routes, by design, have
many more twists and turns and so need more location data. Airport movements will
be only 10 or 11 different points.
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6.4.4.1 Comma Separated Values (CSV)

The Comma Separated Value file is probably the most easily transferable. It is widely
supported and can therefore be used by a variety of different programs for analysis
and further work. It outputs without headers but they are:

[ longitude, latitude, distance, duration, cumulative distance, cumulative duration,
speed, road name ] The following is a middle flight part of a route from Bristol to
Glasgow.

...

-2.721370,51.390074,0.044000,0.031667,13.70400,9.57500,80,Downside Road

-2.722148,51.390284,0.058000,0.043333,13.76200,9.61833,80,Downside Road

-2.723867,51.385569,0.537000,0.503333,14.29900,10.12167,64,Cooks Bridle Path

-2.724255,51.384602,0.110000,0.101667,14.40900,10.22333,64,Winters Lane

-2.719088,51.382669,0.418000,0.285000,14.82700,10.50833,88,BRS: Airport connection

-2.718944,51.382669,0.010000,16.666667,14.83700,27.17500,0.03600,BRS: Check in

-2.718944,51.382759,0.010000,60.000000,14.84700,87.17500,0.01000,BRS: Check in (domestic flight)

-2.718944,51.382849,0.009000,15.000000,14.85600,102.17500,0.03600,BRS: Taxi out

-3.518462,53.599181,252.5910,37.8883,267.447,140.063,400,Domestic short haul flight climb: [BRS:GLA]

-3.711059,54.099902,57.152000,6.233333,324.59900,146.29667,550,Domestic short haul flight: [BRS:GLA]

-4.433055,55.8721,202.595,34.730,527.194,181.02667,350,Domestic short haul flight descent: [BRS:GLA]

-4.433055,55.872033,0.010000,16.666667,527.20400,197.69333,0.036,GLA: Taxi in,taxi_in

-4.433055,55.871944,0.009000,13.500000,527.21300,211.19333,0.040,GLA: Check out (domestic flight)

-4.435925,55.874807,0.365000,0.248333,527.57800,211.44167,88,GLA: Airport connection

-4.441485,55.873705,0.366000,0.341667,527.94400,211.78333,64,Walkinshaw Road

6.4.4.2 Text

The text files, are essentially the CSV file but separated by tabs rather than commas.
The Text-all file contains more points and information than just the normal text file.
These include the node id, bearing and the type of node (intersection junction etc).
This is more useful as an output for verbal routing (as is the html).

6.4.4.3 HyperText Markup Language (HTML)

This again contains the same information as the text and CSV file, however it uses
bearing and junction data to give actual directions. It can work out which way the
route is turn and therefor say things like go left or go straight. The Routino software
also comes with a configurable web front end, so you can route visually on a map
while giving directions etc. Documentation on this and the source files can be found
in /web/www/ folder.

6.4.4.4 Keyhole Markup Language (KML)

The original software created a GPX file (common among GPS tracking) but was
quickly changed to the more dynamic and versatile KML used within Google Earth.
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Figure 6.2: KML of Route between Bristol and Glasgow

It creates a file which can be open within Google Earth and shows the route plotted
over a map. It includes a playback feature to show how the route travels over time
(Starting from a predefined data and time).

The above shows the example from Bristol to Glasgow. Google earth and the KML
markup are very powerful, and so is useful for dissemination of results. It allows a
great deal of interactivity, both temporally and spatially, to help aid spotting trends
at a glance. Later some of these more advanced KMLs will be created from the output
data, but via a post process using Matlab.

6.5 Workflow

6.5.1 Stage 1 - Precomputing

The first stage involves the gathering and parsing of data to be used within the routing
(stage 2) of the process. It is important, because the quality of the inputs and way
they are processed impacts greatly on the quality (and accuracy) of the routing result.
The time needed to parse the OSM inputs in PlanetSplitter is directly proportional
to the size of OSM files. Processing Europe, for example, takes around a few hours,
whereas parsing the Planet.osm can take days. The Airport.osm file comes in at a
small 150MBs which takes only a few moments to complete. Therefore stage 1 is the
most continually computationally expensive part of the door to door routing process.
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Figure 6.3: Workflow Key

Figure 6.4: Overview of Workflow
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Once stage 1 is complete it does not have to be repeated and so is a sort of sunk cost
of the computational efficiency. The real shortfall of this is, that if you need to change
the network, i.e add/remove a new flight or airport or update the road network, you
need to reprocess the entire OSM network. This would be something that needed
to be assessed in the future versions of the software. Openstreetmap has separate
update files with their own protocols for handling and updating an OSM database.
It would therefore be beneficial to add this functionality to PlanetSplitter and thus
remove this large overhead.

6.5.2 Stage 2 - Routing

The second stage is the actual calculation of routes. Using the database from stage
1 along with a number of inputs produces output files describing the optimal route.
This is the bare-bones Door to Door router. The Router application is just C code
compiled to an executable and is therefore fairly low level. It takes command line
inputs to define the route it calculates. It is therefore beneficial to automate stage 2.
The third stage is a collection of ways of automation to gain results quickly without
the need to type lots of long commands into the command line.

6.5.3 Stage 3 - Input Output

The third stage is mainly a superset of stage 2. Stage 2 is ideal, however, for use
within a wrapper such a Graphical User Interface (GUI) or to be called upon from
other programs for example Matlab or even Excel (through Visual Basic). This makes
is very versatile and can be used to find very specific single routes or looping through
hundreds of routes. Stage 3 is designed to make it easier to perform stage 2 or to
loop through lots of routes. The rest of this report chooses to use Matlab to call the
Router and perform post processes. It has been chosen for is usability and availability
along with it ability to handle a large range of data formats (both input and output).

6.5.3.1 Stage 3 (a) - GUI

A GUI simplifies the calculation of inputs for the user and can be linked to easily see
results and open output files directly. Matlab allows for fast prototyping of GUIs so
can be easily changed to suit various needs. It can be used to hide certain processing
from the user. For example Airport times cannot directly be inputed to the Router,
they must be converted to speeds which are representational. Similarly an overall
preference for Car or Aircraft can be used to quickly change preferences for all the
highways associated with each transport type. It also allows the input of an address
with geographic lookup, so the user doesnt need to know the exact longitude and
latitude directly. It would also be possible to have input from a map, clicking a
departure location followed by a destination.
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Figure 6.5: Pre-computing and Routing Stages
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Figure 6.6: Stage 3 - using a Graphical User Interface

Figure 6.7: Screenshot of Matlab GUI for Door to Door Routing

6.5.3.2 Stage 3 (b) - Automation

A more autonomous technique would use less user input (could use a GUI) but could
be used to create a large amount of results without having to create each Router
query individually. For example a list of start and end points with a given profile
(including speeds, preferences and Airport times) would create a series of CSV and
KML files for each optimal route. Moreover the output from the loop could be input
directly into further Matlab processes to analyze a large set of results.

One use of a automated type system is in creating visual data in stage 4. One
focus is to take a major city such as London and loop through a list of other major
cities to see how long it takes to reach them. This can in turn be run for other
major cities, gradually building up a picture of the connectivity and ability to reach
large portions of the population. Further still, by saving the results from all of these
city pairs means you could eventually build a graph network of connectivity and
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Figure 6.8: Stage 3 - Using a Loop

Figure 6.9: Stage 4 - Output and Analysis of results

durations between cities. This information could be analyzed through a variety of
network graph optimizers to see where bottlenecks may occur or where it might be
useful to increase connectivity.

6.6 Stage 4 - Output and Analysis

One of the most important aspects of gathering large amounts of data is being able
to sufficiently analyze it. The optimal routes contain a vast amount of, the challenge
is translating this into information. Not only is there a lot of data, but the data also
has many dimensions to it, geographical and temporal for example, furthermore city
locations have factors such as GDP and population that might be of interest to the
end user.

Creating useful information is therefore a priority of Door to Door routing, it is
the stage 4 which takes the previous 3 stages of work and produces output suitable
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Figure 6.10: Example KML route between London and Kiev

for an end user to both visualize and interrogate. Google earth is a very powerful tool
for visualizing aspects which arise for temporal and geographical data. A KML can
be created which animates a routes path over time. Many routes can be included to
see how far a route can reach after a given time. These routes can also hold textual
information that can be used to display progress and statistics, such as current and
average speeds or population reached.

The above uses color to show how long a journey takes, in this case from London
to Kiev, going from green to red. The closer to red the longer the route has taken.
The darkest orange here is about 6 hours, so all other routes with the same color take
the same amount of time.

6.7 KML Examples

If we pick a city, say Madrid, and find the quickest routes to 500 of the most populated
cities in Europe (stage 3) this produces 500 KMLs. Overlay all the output KMLs
along with colored routes, one can immediately see areas which take longer to reach.
The following are the above described KMLs, the colored routes representing (driving
route only) the time they take. The circular dots represent the time (color) to reach a
city and its population (the height). This is really a type of Isochrone, showing areas
you can reach after a given time (2, 4, 10 hours etc). The KML can be interrogated,
we can see how the route from Madrid to Barcelona is split up.

If we pull back and look at the whole of Europe we can immediately start to see
patterns and busy regions. The dots representing population pop out showing the
most populated cities immediately. Many of these show a similar pattern which is
that of a kind of river and tributary. Flight routes to largely populated cities act
like main rivers, then once landed, smaller tributaries (driving routes) appear, going
to their final destination. Places like Madrid which are on mainland Europe tend to
have more driving routes around, and only when some time to distance ratio is reach
does it switch to drive and fly routes. Cities within Islands (like London) can only go
so far before having to fly because of the sea.
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Figure 6.11: Connectivity of a Madrid

Figure 6.12: Connectivity of a Madrid - Only road sections of routes shown
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Figure 6.13: Connectivity of a Madrid - Road and Flight routes shown

6.8 Plot Examples

To further summaries the KML data we can create plots to show distributions of
flight and road times. We can show at a glance what proportion of the total journey
is made up from driving, flying, waiting etc. Taking the example of Paris (as above),
we can create a stacked bar chart of journeys (ordered by total duration) to try and
see where we flip from driving only to flying. We assign a color to represent the
proportion of the journey taken up by a particular activity. Dark blue for drive time,
red for Flight time etc. We can see that up until about 3 hours the journeys are
almost exclusively driving, then routes start to be a combination of land and air.
By the size of the lighter blue sections we can see when we switch from domestic to
international flights. Transfers only seem to occur for the longer routes (7 hours +).
The profile of the curve itself is quiet important. Curves which have more pronounce
changes tend to be those with a physical barrier, such as island has to get over water
to reach other cities. Paris is one of the nicer examples with a relatively smooth
profile These also become more interesting when you compare them directly to other
cities. For example if we compare Paris to London (right) we can quickly see the
difference. London has a similar shift from exclusively driving to also flying (at 3
hours) but in this case its a complete change. There are no more sole driving routes
after that cut off.
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Figure 6.14: Results for the top European cities148



Chapter 7

Conclusion

7.1 Thesis Summary

The recent and predicted future-growths in the demand for commercial flight mo-
tivates a real need for more efficient, economical and environemntally friendly ap-
proaches to aviation. While a number of potential future-concepts have been proposed
over the years the use of formation flight for drag-reduction shows significant promise.
Through a variety of flight tests, numerical simulation and analytic study researchers
have demonstrated the ability to reduce drag by impressive amounts through the use
of close and extended formation flight. The key research areas are broad, yet inter-
connected including: aerodynamics; automation and control; routing and assignment;
and procedures and regulations. There is still a number of key problems that will
first need addressing, from the automated micro-control problem of maintaining for-
mation to the regulatory and procedural standards such as flight seperation levels,
however ongoing work encourages the idea that formation flight could one day become
a reality.

While a handful studies have looked at the potential of deviating current flight
routes, in order to fly in formation and save fuel, few have tackled the substantial
and highly combinatorial fleet-assignment problem when routing for formation flight.
The work of this Thesis has therefore been to address a number of important ques-
tions needed to solve the problem of globally routing and assignment of commercial
flights. Accordingly, this problem has been broken down into the two overriding,
interconnected questions, with the objective of minimising total fuel burn:

Objective:
Optimise current routes to fly in formation to minimise total fuel burn.

Question 1:
Where should aircraft meet in order to fly in formation?

Question 2:
Which of these formations should be used to minimise cost?

With this in mind the work outlined in Chapter 2 aims to provide a fundamen-
tal approach to answering these questions. A geometric technique to analytically
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calculating optimal formation routes is introduced. While this is used for finding
formations of size two and three, the framework is shown to be extentable to the-
oretically any sized formation. The approach provides a fast method for routing
hundred-of-thousands of formations (of size two) a minute allowing us to solve the
global assignment problem. Given a list of solo flights, this fast routing method allows
for every formation combination to be evaluated in a reasonable time, therefore the
global assignment problem, of allocating flights into formations is made tractable. A
Transatlantic case study is used to explore some of the savings attainable through
this method, with possible average fuel-burn savings against solo flight of around
8.7% for formations of 2 and 13.1% for formations of up to 3. Finally with one of the
main assumptions being that solutions were time-free, it was important to also inves-
tigate the impact of current scheduling on formation flight. Restrictions to maximum
scheduling changes was imposed during the assignment stage where it was shown
that even with just a relatively small adjustment, of up to 30 minutes, to the current
schedules meant formations of size two could achieve upwards of 8%.

With the basic methodology used throughout the Thesis outlined in Chapter 2,
Chapter 3 then looks at the problem of wind-optimal routing for formation flight.
While the geometric approach assummed that flights would fly great-circles, in real-
ity flights often do not, instead adjusting their routes to take into account factors such
as wind. A numerical routing approach, using a finite set of variable way-points opti-
mally placed by an active-set optimisation, was introduced to find optimal formation
routes in the presence of wind. The numerical nature of the approach meant that this
routing method required significantly more computational time than the geometric
approach of Chapter 2 making it far less practical for solving the global assignment
problem. The aim of this Chapter, was therefore used to compare, and ultimately
benchmark, the use of the geometric approach to calculate an ‘approximate cost’ for
use within the assignment stage.

With this in mind two seperate work-flows were presented for assigning aircraft
into formation fleets in the presence of wind. The first, required the calculation of
the cost of the wind route for all combinations, followed by a MILP assignment. This
produced a globally optimal solution but was a significantly more computationally
intensive process. The second approach used the fast geometric method to estimate
the highly-combinatorial assignment process and then the wind-routes were simply
calculated as a post process. The results of this Chapter showed that the geometric
solution acts as a reasonable initial estimate to the assignment problem. Furthermore
the use of a cost-estimating assignment process further improved upon this inital
estimate in exchange for additional computation time. The results of the Estimated
Assignment Method were extremely promising, creating assignments which differed
from the global solution by as little as 0.2 of a percent while taking substantially less
time to compute. In this sense, the wind routing method can be thought of as just
one example of using higher-fidelity routing approaches within this problem, whereby
the geometric method can provide a way of counteracting the combinatorial natural
of the global assignment problem.

The work of Chapter 4 introduced the problem of uncertainty in aircraft takeoff
times whereby negative binomial distributions were fitted to real world ground delay
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data. Two methods where then outlined to try and mitigate the impact this ground
delay had on formations. The first method was a hold approach was discussed, in-
structing aircraft to enter a holding pattern at the point of rendezvous to absorb any
delay to the other aircraft. The second method, and the main focus of this Chap-
ter, was a two-staged state-space approach was outlined using dynamic progamming
and value iteration to assign optimal speed-control policies for airbourne aircraft to
follow for any possible realisation of delay. Issues arising from discretisation of the
state space were counteracted by two additions to the standard grid based approach.
Firstly interpolation was used, allowing for both smoother cost functions and in turn
smoother control choice. Secondly quadtree based sampling allowed the sampling res-
olution to be ‘shifted’ to areas of greater non-linearity improving the approximation
of the linear interpolation.

A notion of risk was introduced, corresponding to the standard deviation of the
achievable results for a given formation or formation assignment. The assignment
MILP of Chapter 2 was then adjusted to include a weighted penalty function on a
formation’s risk, allowing the risk tolerance to be tuned to filter out formations which
were less robust. The concept of portfolio optimization was then also introduced to
produce efficient frontiers defining the optimal level of reward corresponding to any
level of risk-aversion. Finally the transatlantic case study compared the two methods
against and although both produced similar expected savings, by comparing efficient
frontiers it was clear that the State Space approach produces significantly less-risky
results for any level of reward. Interstingly it was also shown that very similar efficient
frontiers could be achieved by simply flying at a fixed nominal speed until the delay
is realised. This propmts the realisation that complex proactive polices may not be
entirely necessary as long as a suitable en-route policies are used.

Three distinct case studies were presented in Chapter 5 to try and assess the
potential of commercial formation flight on a global scale for formations of size two.
This included the Transatlantic flights, used within Chapters 2, 3 and 4, a Singarpore
Airlines flight list and larger list of short/medium-haul EasyJet flights. Fleet average
savings were shown to be around 8%, 6% and 2% for the Transatlantic, Singarpore
Airlines and EasyJet case studies respectively. While the results show clear potential
for formation flight within these regions there large difference between average savings
highlighted how some sets of flights are clearly more suitable than others. With
each of these case studies exhibiting a number of key characteristics, such as flight
length, geographic location and differing flight topologies. This chapter explored the
important features associated within a set of flight for them to achieve a good level
of saving. The level of flight deviation was shown to be highly negatively-correlated
against saving for the transatlantic flights will having almost no correlation for the
EasyJet and Singarpore Airlines flights. Conversely, the flight distance was shown to
be highly positively-correlated against savings for the Singarpore Airlines and EasyJet
flights, while remaining uncorrelated for the Transatlantic flights.

Finally Chapter 6 outlines work undertaken during a six-month industrial place-
ment developing door-to-door routing software to calculate shortest paths between
any two locations. The aim was to assess the connectivity of major cities and how
much of the population is reachable from each city within a given time window. The
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routing software was developed to find the shortest-distance or shortest-time paths
between any two locations using a bespoke road, airport and flight network. This
included a number of key features, such as the ability to handle preferential treat-
ment of road and flight types and also include aspects of airport waiting times such
as check-in, taxiing and domestic and international flight transfers. Open source
data was used and combined with adapted open source software to develop a method
capable of analysing a huge number of city pairs on a large global-network.

7.2 Summary of Contributions

The work explored throughout this Thesis contributes a number of novel ideas in
areas of routing and assignment for commercial formation flight. The following is a
summary of the key contributions:

A geometric routing methodology for commercial formation flight
A unique adaption of a Fermat-Torricelli mathematical problem to model the
formation flight problem. Allowing fast, analytical routing for theoretically
any sized formation, whilst including aspects such as minimum climb/descend
distances constraining and differential-fuel burn. This approach helps to tackle
the impact of the combinatorial nature of enumerating all possible formation
pairings.

Numerical method for formation routing through wind
Although wind-routing exists within single-aircraft routing and trajectory opti-
mization the process has not yet been explored for commercial formation flight.
This Thesis uses an active-set approach with a numerical optimizer to find
minimum-energy paths through a static wind-field.

An Estimated assignment process for improving geometric allocation
A simple adapted assignment process to improve an initial geometric estimated
MILP allocation of flights to formation fleets. A cost-estimating function, based
on the geometric approach, is used to predict the potential cost for the signifi-
cantly more complex wind-route.

Two-stage dynamic programming to mitigate effect of ground delay
Two previously unexplored methods are presented to try and mitigate the effect
uncertainty in take-off time has on flights looking to join in formation. The focus
is a two-stage dynamic programming formulation to calculate optimal-speed
control policies to follow for any possible realisation of delay.

Portfolio analysis for choosing risk-based formation assignments
Taking methods used extensively in economics and finance and applying them
to the formation flight assignment problem. Creating formation assignments to
incorporate aspects of risk and uncertainty. Efficient frontiers are calculated to
directly compare different assignments for the multi-objective optimization of
minimising both cost and risk-level.
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Analysis of three distinct case studies with formation flight potential
The largest assessment of the global assignment problem currently available.
Three distinct flight lists of Transatlantic, EasyJet and Singapore Airlines flights
are routed and globally assignment to minimize total fuel burn.

7.3 Future work

7.3.1 Extension of Current Methods and Work

Smarter approaches for assessing larger formations
The geometric approach has outlined a methodology which can be used to
theoretically route for any sized formation. However, the added combinatorial
problem of deciding the order of joining up and breaking away from formation
would exponentially increase the time required for routing. Therefore a smarter,
perhaps heuristic, approach should be explored for building upon the results of
previous assignments of formations of size two and three.

Optimize for different metrics
While the objective of this Thesis has been to minimise the total fuel-burn
of a entire list of flights, the methods and framework outline can be used for
a number of different metrics. Metrics such as NOx emissions; the overall
duration of the flight; and direct operating costs are just a few of the many
possible scenarios. For example perhaps instead of just saving money on fuel,
the potential fuel-saved could be used to fly at an increased speed, resulting in
shorter flights and therefore lower operating costs.

Decentralised assignment methods
This Thesis has focused on a centralised approach to the formation routing
and assignment problem, however a number of the approaches demonstrated
could be used on a more decentralised level. Perhaps the formation routing
could be applied at either the ATC tactical-phase or at a flow-management
level routing airbourne flights together. This could potentially alleviate some
of the uncertainty around take-off

Benchmark the assignment process for higher-fidelity routing methods
With the work of Chapter 3 showing that the post-processing stage is an ideal
place for more complex routing, it would be of interest to extend this to other,
higher-fidelity routing methods. A full trajectory-optimisation could be used to
route for the formations to include a number of extra factors, producing more
accurate potential routes.

Extend the state space approach to include en-route uncertainty
The state space approach of Chapter 4 was implemented in such a way as to
include extra features at a later date. It would therefore be of interest to apply
similar techniques of robust planning for the en-route portions of the flight,
whereby uncertainties due to turbulance or weather could result in portions of
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the formation leg of the journey being unsuitable for drag-reduction. It would be
of use to observe what kinds of policies, for mitigating this kind of uncertainty,
arose from this problem.

7.3.2 Future Applications

Ad-hoc routing
While a decentralised, global assignment based approach would be ideal, it is
likely that, due to a number of circumstances (such as bad weather and flight
cancellations), flights could be airbourne, wanting to join formation but have
no other formation members. Therefore an ad-hoc approach, requiring minimal
forward planning would be useful.

Air-to-air refuelling
A different ‘future-concept’ for aviation is for aircraft to be refuelled mid-air,
by a large ‘tanker’ aircraft, allowing either for extended aircraft ranges or a
reduction in fuel burn due to taking off with a much lower fuel weight. A number
of the methods within this Thesis could be likely be extended to attempt to solve
the routing problem for both the tanker and the regular aircraft. For example,
the formation routing of Chapter 3, based on an assigned aircraft scalar weight,
could be used, as the tanker would burn fuel at a much greater rate, it would
be assigned much larger weight, incentivising the other aircraft to do most of
the deviating.

Highways in the sky concepts
One more ‘future-concept’ for commercial flight involves the idea of creating
virtual ‘Highways’ in the sky, where flights would fly to an ‘entry point’ and
then fly along the more densely packed airways (for example along the North
Atlantic Tracks), allowing for increased traffic while reducing ATC workload,
but also leaving the potential for an area perfect for formation flight. The
routing stages of this Thesis could then be used to find optimal routes to the
highways’ entry points, while on the highway formation fleets could combine to
make larger formations.

7.3.3 Extensions of Door-to-Door Routing

Assess impact of formation flight might have on connectivity
A small connection between the formation flight problem and the door-to-door
routing problem is that if formations opted to fly faster, with costs counteracted
by the drag-reductions, then flight times could be shortened. This decerease in
flight time could potentially increase the connectivity of major cities and go
someway to reaching the 4-hour ACARE target.

Sensitivity analysis of airport waiting times
While the methods and framework have now been outlined, it would be of
interest to undertake sensitivity analysis on a number of timing factors effecting
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airports. For example, if check-in times could be reduced by 30 minutes how
would that effect the connectivity of European cities.

Analysis of connectivity for industry and shipping
With the inclusion of different vehicle types such as HGVs it is possible to run
a similar anlysis to see how well cities are connected from a cargo and shipping
point of view. With speed and road type restrictions for HGVs along with
a whole number of additional time factors associated with cargo aircraft the
connectivity results would be of great interest.

Additional transportation methods
The software adpated allows for a number of different transportation types
this includes aircraft, cars, HGVs, motorbikes, bicycles and even walking. For
increased realism it would be of interest to add addition transportation methods
such as sea, rail and high-speed rail to see what impact this has.
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