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This paper explores an analytic, geometric approach to finding optimal routes for commercial formation flight. A
weighted extension of the classical Fermat point problem is used to develop a scalable methodology for the formation
routing problem, enabling quick calculation of formation costs. This rapid evaluation allows the large-scale fleet
assignment problem to be solved via a mixed integer linear program in reasonable time. Weighting schemes for
aircraft performance characteristics are first introduced and then extended to allow for differential rates of fuel burn.
Finally, a case study for 210 transatlantic flight routes is presented, with results showing possible average fuel-burn
savings against solo flight of around 8.7% for formations of two and 13.1% for formations of up to three.

I. Introduction

C OMMERCIAL aviation is constantly looking for ways to cope
with predicted increases in demand [1] while simultaneously

trying tomitigate the resulting impact on the environment. This paper
explores the possibility of flying in formation to decrease overall
fuel burn.
One of the immediate benefits of formation flight, over other

proposed fuel-saving methods, such as air-to-air refueling or
blended-wing/body aircraft [2–4], is the relativelyminimal change to
the current infrastructure. The majority of today’s commercial air-
liners can fundamentally observe a reduction in drag from formation
flight [5]. Although the possibility of designing new aircraft in the
future to take advantage of the aerodynamic benefits of this scenario
would be a long-term goal, in the short term, it would not be a
necessity. Studies into areas of biomimicry, such as geese flying in a
V formation [6,7], have always interested scientists, and the military
have long flown in formation for communicative and defensive
purposes [8]. More recent studies assessing both the aerodynamic
possibility [9–11] and the associated control problem [12–15] of
flying in close proximity to reduce drag, coupledwith flight tests [16–
18], shows promise that flying in formation can reduce fuel burn.
According to the aerodynamic studies cited, practical formation
flight is likely to demand that aircraft fly closer than current sep-
aration minima. It is perhaps better suited to self-separation concepts
[19]. The operational and regulatory challenges of formation flight
are beyond the scope of this paper.
This paper focuses on another key question in the deployment of

formation flight: Which flights should join in formation? To answer
this question, two complex and interconnected problems must be
solved:
1) The routing problem: Estimate the rendezvous and breakaway

points for all possible formation groupings and thus the fuel use
for each.
2) The assignment problem: Select a compatible set of formations

from those considered to achieve minimum global fuel use.
Note that this paper assumes fuel burn as a cost. Section VI

considers the impact on timing and introduces scheduling

constraints. Studies based on individual pairings, looking only at
the routing problem, have shown potential positive tradeoffs between
the diversion to join formation and the reduction in drag formation
flight produces [20–25]. Formation routes for five aircraft studied by
Bower et al. [5] focus on aerodynamic aspects such as wing tip
separation. This, along with a case study, shows significant fuel-
saving potential even with heuristically chosen routes. These prior
works adopt numerical trajectory optimization techniques [26–28] to
calculate high-fidelity solutions to the routing problem. Once the
routing problem is solved, evaluating the cost for each potential
formation, the subsequent assignment problem is readily solved by a
discrete optimization [21].
The challenge in considering larger numbers of aircraft is the

growth in the number of potential formations to be evaluated. For
example, the 210-flight transatlantic case study of Sec. VI has
roughly 22,000 possible pairings, and larger possible formations
introduce even more combinations. Xu et al. [21] used a detailed
trajectory optimization for a scenario involving 150 aircraft, but
introduced a heuristic filtering stage to reduce the number of for-
mations considered.An alternative approach, adopted in this paper, is
to simplify the routing problem. Ribichini and Frazzoli [29] achieved
this by assuming constant fuel-burn rates and modeling the problem
as a graph search over possible rendezvous and breakaway points,
showing potential savings for an example with three aircraft.
This paper proposes a newmethod for evaluating large numbers of

potential formations, based on a simplified geometric approach
solution to the optimization of the rendezvous and breakaway points.
To achieve rapid solutions, the method deliberately omits schedule
and wind effects and assumes great circle flight segments. Once the
most promising formations have been identified, these effects can be
reintroduced in higher fidelity optimization [21,30]. Section II begins
by outlining the geometric approach to finding time-free optimal
routeswith few constraints. An adaptation of thewell-knownBreguet
range equation [31] is introduced in Sec. IV, where it is used to
calculate both the total fuel burnt and also the rate at which the fuel
burn changes during a flight. Section III describes the method for
extending the geometric approach to generate optimal routes for
larger formations. The costs of these formations can then be used
within the “assignment problem” of Sec. V to obtain a globally
optimal allocation of aircraft into formations. Finally, a case study of
210 transatlantic flights is presented in Sec. VI to illustrate all the
methods of this paper and the results are compared.

II. Geometric Method for Finding Optimal Routes for
Formation Flight

This section introduces the route optimization method for a
simplified case. Begin by assuming no airspace restrictions, constant
altitude, and constant rate of fuel burn per unit distance. Two flights,
flights A and B, fly from two distinct airports A and B to a common
destination airport C. Under the assumptions, the optimal flight will
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consist of two solo straight-line legs, from A and B, respectively, to a
common join point P, then a shared leg from P to the destination
airport C. The formation routing problem is then defined as finding
the point P joining A, B, andC together, such that the sum of the fuel
burnt is minimized. Extensions for distinct destinations, a spherical
Earth, and differential fuel burn will be addressed in Secs. II.E, II.G,
and IV, respectively. Also, although we have defined pointsA,B, and
C as airports, they could conceivably be defined as entry or exit points
to airways or NAT tracks.

A. Using Arc Weights to Represent Formation Flight

Anotion of “arcweighting”will be used to incorporate the concept
of the drag reduction benefits arising from flying in formation.
Eurocontrol’s Base of Aircraft Data [32] (BADA) outlines detailed
operational and performance factors. The data contain aircraft
performance models for a wide range of common aircraft types. By
only looking to create formations during cruise, the climb and descent
section of the flight can be considered “sunk costs,” because they are
carried out irrespective of any formation. A constant nominal fuel-
burn rate can then be taken directly from BADA, for each particular
aircraft, representing a per distance fuel-burn rate. This fuel-burn
constant is then used as the arc weightings for each flight, to take into
account distinct aircraft types and corresponding differing rates of
fuel burn.
The proportion of fuel used along the formation arc of the flight

should, however, be less than if the aircraft were not in formation.
Studies by Ray et al. [17] and Bower et al. [5] expect very reasonable
drag savings (and thus a relative reduction in fuel burn) for aircraft
flying in the upwash of other formation members. The control and
distribution of the formation (e.g., leader selection) is assumed to be
determined separately, and only an aggregate fuel burn rate for the
whole formation is used for route optimization. Ideally, this would be
based on a detailed consideration of the aircraft types involved.
However, this would be a significant piece of work in its own right
and is beyond the scope of this paper. For the purposes of this paper,
average formation fuel-burn factors per fleet member are estimated
using results from [22–25] for varying fleet sizes as follows: size of
fleet n ! 1 is one, n ! 2 is 0.9;n ! 3 is 0.85; n ! 4 is 0.82; n ! 5 is
0.8; n ! 6 is 0.785; n ! 7 is 0.775. For example, if the front aircraft
receives no savings, whereas the follower saves 20%, the resulting
average is taken to be "1# 0.8$∕2 ! 0.9 ! λf;n relative to both
aircraft in solo flight. The method will readily extend to a more
detailed determination of this factor based on formations of particular
types of aircraft. Although, initially, the formation discount will
apply directly to distances flown, in Sec. IV, the discount will be
applied to the drag instead.
In terms of scalar arc weighting, this means that, at the formation

stage of the flight, for n members in the fleet, each member
contributes the proportion λf;n (from the preceding paragraph) of
their own weighting, and the total estimated fuel burn per unit
distance on the formation arc is simply the sum of all these
contributions.
For the two flightsA andB, leaving airports A andB, traveling to a

common destination C and wanting to join in formation via some
point P, let the solo arcs AP and BP have arc weightings of wA and
wB, respectively (taken from BADA). The fleet has a size of n ! 2
and so the weight of the formation arc PC is wC !
"wA #wB$ × λf;2 ! "wA #wB$ × 0.9. With this in mind, the
problem is then to find the optimal location for this point P. The
following sections look to use an adaptation of the Fermat point
problem to solve this.

B. Fermat Point Problem

The Fermat point problem [33,34], a classical mathematical
problem posed in the late 17th century, states that, for a given triangle
ABC, on the Euclidean plane, find a point P such that the sum of the
distances kPAk, kPBk, and kPCk is minimized.
This is in fact equivalent to the formation problem if the weights

wA, wB, and wC are all equal. Over the years, mathematicians have
posed numerous ways of finding this point P, including derivative-

basedmethods, the use ofmechanics, and Fermat’s elegant geometric
solution. This paper reviews an adaptation of the original approach,
first proposed via a series of letters between the mathematicians
Fermat and Torricelli [33,34], creating a solution based on the
geometric dualities of triangles and circles.
Take a triangle ABC and construct outwardly three equilateral

triangles along, and with side lengths corresponding to, the arcs AB,
BC, andCA as in Fig. 1. Then, the lines from the outer vertex of each
new triangle to its opposite vertex of the original intersect at a single
point (Fig. 1b). This intersection is the desired point P, which
minimizes the sum kPAk# kPBk# kPCk (sufficiencies ensuring
certain types of solution are explored by Shen and Tolosa [35]). An
analogous result can also be observed by constructing the
corresponding circumscribed circles of each of these three new
equilateral triangles, creating a concurrency at the same optimal point
P. Mathematical proofs for Fermat point problems of this type (both
planar and spherical) are fairly abundant: For a deeper understanding
of these available methods, the authors invite you to read [36–40].
One notable observation is the angles at which these arcs intersect

[41]∠APB,∠BPC, and∠CPA are all 120 deg. This result holds true
with many studies of minimization observed in nature. For example,
the hexagonal structure of a honeycomb [42], minimal surfaces in
soap film experiments [43,44], and even molecular arrangements
[45,46] all exhibit 120 deg angles.

C. Extending for Weighted Arcs

With the notion of weighted arcs, representing differing costs per
unit distance, the Fermat point problem can now be extended. For
three verticesA,B, andC, and the join pointP, the scalar weightswA,
wB, andwC correspond to the arcsPA,PB, andPC, respectively. The
problem is then minimizing the sum of the weighted distances:

f"P$ ! wAkPAk#wBkPBk#wCkPCk (1)

An analogy to this vectorial equation is to imagine a table with three
holes, representing the locations of the points A, B, and C. Then, at
each of the holes, a massless, frictionless string is passed through and
the corresponding weight is tied to one end. The remaining ends of
these three strings are tied into a single knot. This systemhas a natural
mechanical equilibrium and this analogy, coupled with the minimal
energy principle [33], implies that the location of the knot on the table
at the mechanical equilibrium is identical to that which
minimizes Eq. (1).
Therefore, adapting the ABC triangle of Fig. 1a for weighted arcs

leads to a vectorial equilibrium about the pointP as in Fig. 2, such that

wA
PA

kPAk#wB
PB

kPBk#wC
PC

kPCk ! 0 (2)

A

B

P CP

A

B

C

A

B

P
C

a) Triangle ABC with 
possible join point P

b) Circumscribed circles and 
subtending lines concurrent at 
an optimal point P

Fig. 1 Fermat8 –Torricelli geometric construction solution.
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The law of cosines applied to Eq. (2) leads to expressions θA, θB,
and θC for the intersection angles ∠BPC, ∠APC, and ∠APB,
respectively:

θA ! cos−1
!
−w2

B − w2
C #w2

A

2wBwC

"
;

θB ! cos−1
!
−w2

A − w2
C #w2

B

2wAwC

"
;

θC ! cos−1
!
−w2

A − w2
B #w2

C

2wAwB

"
(3)

It is important to note that these expressions are obtained solely from
the input of the three scalar weight values wA, wB, and wC and,
therefore, a priori of any physical location [33].

D. Loci of Possible Formation Join Points

It has been shown that, given only the three arc weightings, the
specific angles of interception θA, θB, and what will be referred to as
the “formation angle” θC (i.e., the angle between the two solo legs of
the flight), can be calculated. Knowing these angles eliminates the
need for a fixed destination vertexC. Two fixed points A and B and a
formation angle θC, at which the trajectories must meet, describes the
loci of possible formation points (the dark lines in Fig. 3) for all
possible destinations. Furthermore, from the formation angle, two
circleswithA andBon their perimeter can be constructed. Each of the
circles is composed of twoparts: the first contains, on its boundary, all
the points P such that ∠APB ! θC [i.e., they meet at the angle
required by Eq. (3)]; the other contains all the points that meet at
180 deg –θC as in Fig. 3a.
A similar approach to Torricelli’s in the original Fermat problem,

of constructing equilateral triangles on the sides of the ABC triangle,
can also be used here. First, along the arc AB, two similar triangles
ABX1 andABX2 can be constructed as in Fig. 3b. The side lengths of
these two triangleswill be in the sameproportions as theweights [33].
That is, the ratios wA∶wB∶wC, kAX1k∶kBX1k∶kABk, and
kAX2k∶kBX2k∶kABk are equivalent. Because the length AB is
already known, the other two sides can easily be calculated. This
generates two “back vertices” X1, X2 as in Fig. 3b. Note also that the
two circles, “inscribed” byA,B, and θC in Fig. 3a, are in fact the same
circles that also circumscribe the triangle ABXi (i.e., the circle passes
through all three points A, B, and Xi) in Fig. 3a.

Therefore, given any pair of nodes fA; Bg with three arc weights
wA,wB, andwC, two back vertices can be constructed along with the
corresponding loci of possible formation points for any destination.
Then, for any destination C, the formation join point must lie at the
intersection of the lineCX and the locus arc of possible join points (at
most, only one of the back vertices will be used, with the choice
depending on the location of the destination node).

E. Routes with Distinct Departure and Destination Nodes

Knowing the loci of possible join points a priori of a destination
allows the assessment of themore general problem of two routes with
distinct departure and destination nodes. Where the problem is
finding not only a rendezvous location for optimal formation flight,
but also the point at which a formation should break away.
Given two solo routes between AC and BD (Fig. 4a), first the

circles and back vertices are calculated for each pair fA;Bg and
fC;Dg. Then, as in Fig. 4b, the arc joining a back vertex Xi of fA;Bg
to a back vertex Yj of fC;Dg (i; j ∈ f1; 2g) should cross both circles
at the required angles (Fig. 4c), which would result in two crossing
points P andQ, which are the respective join and break points of the
formation (Fig. 4d). However, if no single arc exists that satisfies the
angles of Eq. (3) on both circles, then the optimal path is the shortest
path between eitherXi andC orD, or Yi andA orB, so that the angles
are satisfied only once. If that is not possible, then the formation arc
will simply connectA orB to eitherC orD. This is referred to as being
“caught” at an airport and, in most scenarios, is undesirable because
aircraft need room to climb to an appropriate altitude. A solution to
this, however, is outlined in the following section. The departure side
for each of these cases is outlined in Fig. 5. For a given destination
nodeC (which could also represent a back vertex), its location will be
in one of four regions. Regions 1 and 2 outline when a back vertex is
used, whereas regions 3 and 4 are when the route is instead caught at
an airport.

F. Incorporating a Minimum Distance to Climb and Descend
Some of our early results indicated that many join points were

either at the airports themselves, as they were being caught (because
the destination was in region 3∕4 of Fig. 5) or very close to an airport.
Although this seems like a reasonable result, practicality issues could
likely prohibit such a route. In this scenario, flights would either need
to already be at a cruising altitude or else take off in formation
(possibly on a parallel runway, which would rule out many airports)
and then engage in a series of step climbs in formation until they
reached a cruising altitude. The implications of this, along with the
difficulty of achieving formation drag savings along the way, meant
the decisionwasmade to only look at joining formations once aircraft
are at a cruising altitude.
Horizontal distances between takeoff and an altitude at which

formations can be joined (similarly, a formation altitude and landing)
are calculated for each flight. Realistic rates of climb and descent for
any given aircraft can be taken from BADA, allowing the calculation
of these radial distances. The distances then define the radii rA, rB,
and rC of circular regions around the airports A, B, and C,

P

A

B

C

A

C

B

Fig. 2 Three-point vectorial representation and corresponding angles.

a) Inscribed loci of 
possible formation 
points given θC

b) Back vertices of optimal 
trajectory ensures all three
intercept angles are satisfied

c) Final optimal route connects 
a back vertex to the destination

180 deg - qC

Fig. 3 Possible solution points given an angle of interception.
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respectively. If the optimal formation point lies within any of those
regions (as in Fig. 6), it should not be used and instead bemoved onto
the region’s perimeter. The problem is still to minimize Eq. (1) but
subject to kPAk ≥ rA, kPBk ≥ rB, and kPCk ≥ rC. This con-
strained minimization problem can still be solved using similar
geometric methods outlined in this paper. Take the example of Fig. 6,
whereby the intersection is too close to node A and therefore violates
kPAk ≥ rA. If P is to be moved onto the perimeter, the first point at
which it can do so is when kPAk ≥ rA. Substituting this into Eq. (1)
results in

f"P$ ! wArA #wBkPBk#wCkPCk (4)

Therefore, when minimizing f"P$, wArA can be considered a
constant, being independent of the location ofP, and so any choice of
wA will result in an analogous minimization problem. Although the
relations of Eq. (3) still hold for the constrained problem (because
they are true a priori of location and therefore any distances), theywill
not necessarily be satisfied by points on the radial circles. Therefore,
to satisfy both the angles equation and the radial constraints, the
weights must be adjusted. Adjusting wA does not affect the
minimization problem, and therefore the constrained problem
becomes the problem of picking the smallestwA so that the angles of
Eq. (3) and the radial constraints are both satisfied. In the absence of
an entirely analytic solution to finding the necessary value of wA, a
simple bisection search can be used. Given an interval forwA to be in,
wA is predicted and then the resulting P is found, the interval is then
reduced until kPAk ! rA. This process is shown in Figs. 6c–6d. In
line with the table and weight analogy of Sec. II.C, ifP is too close to
node A, one can imagine slowly reducing the hanging weight wA
until P is sufficiently far enough away.

G. Extension onto the Sphere

An important note is that the original Fermat problem, and
adaptations described in this paper, have been inherently planar. As
such, any planar solutions for routing for formation flight will not be
optimal on the globe. The properties of a curved surface mean it is
impossible to find a two-dimensional (2-D) Earth projection system
that is isometric [47] (i.e., preserves both angles and distances). The
weighted Fermat point problem has been extended to surfaces [36–
38,40] and to even higher dimensions [39]. Most notably Zachos and
Cotsiolis [36] prove Eq. (3) holds for the problem on the sphere.
Therefore, it is possible to take the Earth to be spherical (with

points constrained to its surface) and translate our method for use in
spherical coordinates by increasing the dimension of each element of
the method. Straight lines become planes, intersecting the Earth
through its center, creating great circle paths. Inscribed circles
become inscribed spheres, which, because we are constrained to the
Earth’s surface, intersect the Earth along a planar surface known as a
“small circle.” Each one of these small circles will contain a back
vertex, two nodes, and a loci of formation points, all of which will be
coplanar. Therefore, the original two-dimensional problem is
translated to the three-dimensional coordinates of this small circle.
Where the plane, defined by the great circle path between the back
vertex and the destination, intersects the small circle determines the
optimal formation point. This provides an analogous solution on the
spherewhile preserving the angles of intersection [36] and previously
outlined methods. It is somewhat intuitive that the angles will be the
same as the 2-D case: As an ever smaller region around the join is
considered, the sphere appears flatter and the great circles appear
straighter, but the angles between them remain the same.
The transition to the spherical problem also enables the more

appropriate distance calculation using great circle paths. In general,
commercial flights do not fly completely great circle paths due to a
number of factors, notably the effects of wind and weather. Although
this paper assumes only great circle paths, the authors have looked
into the problem of more complex routing, avoiding winds [30].
Whereby the approaches of this paper were used to first solve the
assignment problem (as in Sec. VI), then the much smaller subset of
formations is postprocessed to take into account the more complex
wind-routing problem, allowing a balance of tractability and realism.

H. Verification

An exhaustive search for 5000 random pairings of solo routes has
been used to verify the spherical geometric method. For each pairing,
all possible join points on a discrete grid (increments of 0.01° of
latitude and longitude) are calculated and the onewith the lowest cost
is taken. Figure 7 shows the difference in total formation distance of
the geometric solution against the brute force approach. Figure 7a
shows the frequency of a difference in solution. There are no

A C

B
D

Y 1

Y 2
X 1

X 2

A C

B
D

Y 2
1X

A C

B
D

A C

B
D

P Q

a) Solo routes

b) Trajectory between back vertices crossing loci of 
possible optimal points

c) Trajectory intercept of loci

d) Optimal route
Fig. 4 Join and break points for two distinct routes.

X 1 X 2

Region 1
X 2 to C

Region 4
B  to C

Region 3
A to C

Region 2
X 1 to C

A

B

Fig. 5 Snapshot of regions where destination nodeC can be located and
corresponding connecting path.
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instances of the geometric method giving aworse result and it is clear
that the geometric method accurately finds the optimal point of
formation, while taking a fraction of the time.

III. Extension for Larger Fleet Sizes
A. Decoupled Problem

The framework outlined in Sec. II is a powerful result, allowing the
routing problem to be decoupled, reducing pairs of nodes to their
back vertices and inscribed circles. The optimal route for any
formation appears to project from a back vertex regardless of
destination. Because this information is independent of the
destination, it depends only on the relative weights and fixed pairs of
nodes. This fairly elegant method of projecting from a back vertex
can be further extended to not only solve for formations of two
aircraft, but theoretically any size.

Given the three flights A–C (as in Fig. 8a), first take two of them,
for example flight A and flight B. Then, by finding the back vertices
XFlightAB and YFlightAB, whose arc crosses at the required angles, a
“virtual” flight AB can then be created. The projected route is going
from XFlightAB to YFlightAB and is shown in Fig. 8b. The third route,
flight C, can now be added. This is done just as before, only the arc
weightings need to be updated to take into account the new size of the
formation at each stage of the route. That is, because flight AB
contains two aircraft, it will burn fuel at a combined rate of
wFlightAB ! "wFlightA #wFlightB$ × λf;2, whereas flight C is
weighted at wFlightC. The final formation weighting will then be
wFlightABC ! "wFlightA #wFlightB #wFlightC$ × λf;3. The aug-
mented problem is then solved where flight AB and flight C should
join (the point PABC) and break away (the point QABC) as in Fig. 8c,
with the updated weightings wFlightAB, wFlightC, and wFlightABC. All
that is left is to split flight AB back to two separate flights and update

Join

A

B

C

Join

A

B

C

Join

A

B

C A

B

C

Join

a) Initial attempt too close to airport A b) Decrease ωA and update back vertices and
circles: better, but join still too close

c) Decrease ωA and update back vertices and
circles: join sufficiently far away

d) New formation meets at required distance
away

Fig. 6 New join point required to be at least a certain distance from each airport.
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the points PAB and QAB based on their respective new destinations
PABC and QABC as Fig. 8d outlines.
Figures 8a–8d depict the case where flight A joins flight B, then

flight AB joins flight C and breaks away in a similar way. However,

realistically, it is also necessary to find the order of joining that
minimizes total fuel burn for all flights. Therefore, the various
combinations of the order of joining formation, including scenarios
whereby itmight be optimal for only two routes to joinwhile one flies
solo, must be also be computed and then the minimum is taken.

B. Example of Creating Fleets of Size 2 and 3

For any three distinct routes, formations of size 2 can be made in
three different combinations, each with its own cost. When trying to
find fleets of size 3, there are an additional nine combinations,
consisting of two choices from three, one for the join up and one for
the breakaway. For example, looking at one of the combinations,
given the two routes (both flown by an Airbus A340-300),

FlightA ! fAtlanta;Barcelonag;
FlightB ! fCincinnati; Frankfurtg

and by using the preceding methodology with weight values from
Sec. II.A results in the desired points for the formation flight.
Figure 9a shows the formation of flight A and flight B. The total solo
great circle distance, and therefore distance at which fuel is burnt
over, for flights A and B is 14,359 kmeq, where 1 kmeq is the
equivalent fuel burnt by an aircraft flying solo for 1 km. When flown
in formation, the fuel burn (the kmeq covered using the discounted
fuel-burn rates) is reduced by 737 to 13,622 kmeq. This equates to a
savings of roughly 5.1%.
By adding a third flight,

FlightC ! fMiami;Zurichg

and following the previously outlined method and evaluating all
combinations, the optimal ordering of join and break points and their
respective locations (as shown in Fig. 9b) can be found. The order of

Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

Flight A 

Flight C

Flight B

Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

Flight A

Flight C

Flight BFlight ABCPAB

PABC

QAB

QABC

Flight AB
XFlightAB Y FlightAB

Flight C

PAB QAB

Flight ABC
X FlightABC Y FlightABC

PAB

PABC

QAB

QABC

X FlightAB Y FlightAB

Flight ABC
XFlightABC YFlightABC

PAB

PABC

QAB

QABC

XFlightAB YFlightAB

Flight A

Flight C

Flight BFlight ABCPAB

PABC

QAB

QABC

a) Solo routes flights A, B and C
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d) Update flight AB join points given the future join to give 
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Fig. 8 Join and break points for three distinct routes.

Fig. 9 Optimal join and break points for fleet size 2 and 3.
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joining formation is as follows: FlightA joins flightC, then thevirtual
flight AC joins flight B. Flight ABC then flies over the Atlantic in
formation followed by flightA first breaking away, leaving flightBC,
then flight B and flight C split to fly to their respective destinations.
The resulting total savings is about 8.4% against all three flying solo.
This outlines a simplistic framework for deciding the locations

where fleets of size 2 and 3 should join up and break away to
minimize total fuel burn. Furthermore, the use of virtual flights, as
described in Sec. III.A, in principle, means it is possible to solve for
fleets of any size by decomposing into permutations of subproblems
of size 1, 2, and 3.

IV. Modeling Aircraft Fuel Burn
A. Differential Fuel Burn Model

A nominal rate of fuel burn for the aircraft-specific arc weightings
acts only as a reasonable estimate for the final problem. This nominal
amount, however, does not incorporate the fact that as an aircraft flies
it burns fuel, and so decreases in weight, resulting in a lower rate of
fuel burn at later stages of a flight. For example, if one flight travels
1000 kmbefore itmeets another,which has flownonly 300 km, then a
nominal ratio of weights may not accurately reflect this. Therefore,
the method needs to be able to move from a notion of a constant
nominal fuel burn to one that changes with respect to distance flown.
Furthermore, in this model, the drag reduction benefits of flying in
formation will be applied directly to the coefficient of drag via a
discounting factor λ.
Using a rearrangement of the Breguet range equation, outlined by

Anderson [31], amodel of an assumedweight change profile for each
aircraft can be developed. Let dW denote a change in weightW of an
aircraft due to fuel consumption over an increment of time dt.
Assuming constant level flight during cruise, thrust available TA
equals thrust required TR. Thus, given a thrust-specific fuel
consumption factor Ct, the following relation holds:

dW ! −CtTRdt (5)

which rearranged with respect to time dt, is

dt ! −
dW

CtTR
(6)

For the incremental distance dr traveled by the aircraft over an
increment of time dt, Eq. (6) is multiplied by a stream-free velocity
V∞ so that

dr ! V∞dt ! −
V∞dW

CtTR
(7)

where, given steady level flight, V∞ is constant. Rearranging Eq. (7)
leads to the rate of fuel burnt per unit of distance

dW

dr
! −

CtTR
V∞

(8)

Then, for a given coefficient of lift CL and drag CD,

TR !
W

CL∕CD

Using the definition that, for a given density ρ∞,

V∞ !
###############
2W

ρ∞SCL

s

results in

dW

dr
! −

CtCDW

V∞CL
! −

#########
ρ∞S
2

r
Ct

C1∕2
L ∕CD

W1∕2 (9)

To include the formation drag reduction, a discounting factor λ is used
and the coefficient of drag is therefore replaced by CD ! λCDsolo

.
Assuming constant Ct, CL, CD, and density ρ∞ (at a constant
altitude), then

γ !
#########
ρ∞S
2

r
Ct

C1∕2
L ∕CDsolo

can be used as the contribution of the constant terms. Equation (9), for
a given weightW and drag-discounting factor λ, then becomes

dW

dr
"W; λ$ ! −λγW1∕2 (10)

The constant terms of γ can all be calculated directly from BADA,
whereas theW required to evaluate this equation is determined after a
certain flight distance, by following through with this derivation
enables it to be calculated. First, integrate dr between the limits r ! 0
(when W ! W0, the initial weight) and r ! R (when W ! W1, the
final weight),

R !
Z
R

0
dr ! −

Z
W1

W0

dw

λγW1∕2 !
Z
W0

W1

dw

λγW1∕2 (11)

Given λ and γ are constant, then

R ! 1

λγ

Z
W0

W1

dW

W1∕2 !
2

λγ
"W1∕2

0 −W1∕2
1 $ (12)

completing the derivation of the Breguet range equation [31].
Equation (12) can be rearranged to give the final weightW1, given

an initial weightW0, discount factor λ, and distance flown R:

W1"W0; λ; R$ !
! #######

W0

p
−
λγ
2
R

"
2

(13)

This equation starts with a fueled aircraft (i.e., knowledge ofW0) and
gives an estimate of the final aircraft weight W1 after flying a given
distanceR, with a drag-discounting factor λ, and thusW1 is a function
of initial weight W0, distance, and λ. Similarly, given a final weight
W1 (i.e., when all normal fuel has been used), one can estimate the
“fueled” initial weight W0 needed to fly a distance R with discount
factor λ, and thusW0 is now a function of final weightW1, distance,
and λ:

W0"W1; λ; R$ !
! #######

W1

p
# λγ

2
R

"
2

(14)

Equations (13) and (14) are exploited in the following sections to both
estimate the fuel burnt and estimate the arc weightings used in the
geometric method.

B. Initial Weight Estimation

To predict the fuel burn rate at different points along a flight, an
initial weight value is needed. The total initial fuel is defined to be the
fuel required to fly the entire journey plus enough reserve fuel. The
initial fuel will be a large factor in the overall takeoff weight. In
general, formations must deviate from their individual solo routes to
meet up with other formation members, increasing the total distance
traveled (even if they burn less fuel in doing so). Therefore, for an
aircraft to safely fly a formation route, it must, as a conservative
estimate, carry enough fuel so that it could, if necessary, fly the longer
formation route entirely solo without any reduction in fuel burn. In
general, this means that any aircraft planning to join in formation
must carry more fuel relative to the same aircraft flying solo and in
turn it will burn fuel at a slightly increased rate. Because there are
currently no rules in place for commercial formation flight to address
this, an assumption is made that, for either solo or formation flight,
each aircraft must carry enough fuel to take off, land, and fly 110% of
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the full cruise distance solo. This additional 10% of the cruise
distance will represent the reserve fuel requirement.
Finally, in the absence of specific aircraft payloads, this paper

assumes the same nominal payload of 70% that is used in BADA, and
so the zero fuel takeoff weight (ZFTOW) can be taken directly from
BADA. To this ZFTOW, theweight of the fuel required is then added
to reach an estimate for the initial weightW0. This assumptionmeans
that the initial takeoff weight is a function of cruise distance. This can
be incorporated into the weight Eq. (14) using λ ! 1 and R ! 110%
of the formation distance.

C. Differential Fuel-Burn Arc Weightings

At the point of rendezvous (and similarly breakaway), each aircraft
will have burnt a certain amount of fuel, be a particular mass, and
therefore burn fuel at a particular rate. The difference in the individual
amount of fuel burnt (and the range of fuel-burn rates) to reach the
rendezvous (or breakaway) point may be vast, but at least at a
pointwise level, one can consider the fuel-burn rates to be essentially
constant. Therefore, it is only necessary to calculate the pointwise
fuel-burn arc weightings at the rendezvous and breakaway points for
use within the geometric model. These can be calculated from
Eq. (10), using the current weight at the join pointWjoin (or, similarly,
break pointWbreak) and the current discounting factor λ.
Optimal formation paths will still be built up of great circles, with

the join angles calculated for the rate of fuel being consumed at the
point of join. That is, using Eqs. (8) and (13), all the arc weights at the
join

wAjoin
! dWA

dr
"WAjoin

; λAsolo
$

wBjoin
! dWB

dr
"WBjoin

; λBsolo
$

wCjoin
! dWA

dr
"WAjoin

; λAform
$ # dWB

dr
"WBjoin

; λBform
$ (15)

or similarly, the arc weights at the break point

wAbreak
! dWA

dr
"WAbreak

; λAsolo
$

wBbreak
! dWB

dr
"WBbreak

; λBsolo
$

wCbreak
! dWA

dr
"WAbreak

; λAbreak
$ # dWB

dr
"WBbreak

; λBbreak
$ (16)

can be calculated and the method of Sec. II can then be used. For solo
flight λAsolo

! λBsolo
! 1, while during formation, this paper assumes

that the discounting factors during formations are
λAform

! λBform
! λf;2, that is, an equal share of the discount for all

formation members. The values for WAjoin
(similarly, WBjoin

) are
calculated according to W1"WA;0; 1; RAjoin

$, where RAjoin
is the

distance from Adeparture to the join point andWA;0 is the initial weight
of A. The values for WAbreak

(similarly, WBbreak
) are calculated

according to W0"WA;1; 1; RAbreak
$, where here RAbreak

is the distance
from Adestination to the break point andWA;1 is the final weight of A.
The following outlines the method for estimating the differential

arc weightings for a formation route. This is essentially a fixed-point
iteration algorithm, startingwith nominal entries for initial values and
then updating and recalculating through each iteration to improve the
solution. The steps are as follows:
1) Take the inputs of two flights: the aircraft types and departure

and destination airports.
2) Using BADA, assign nominal initial values for aircraft initial

masses W0 and geometric weights wA, wB, wC for both join and
break point.
3) Find the optimal formation route.
4) Calculate the distances flown by each flight for the

formation route.
5) Calculate the aircraft fuel burn for the given distances using

Eq. (13) or (14).

6) Update estimated initial massesW0 and final massesW1 based
on fuel required.
7) Update geometric weights wA, wB, wC for both join and break

point using Eqs. (15) and (16).
8) Calculate total fuel burnt for each flight:W0–W1.
9) If the difference between the new geometric weights and

previous ones is significant enough, repeat steps 3–9.
In the transatlantic examples studied in Sec. VI, this algorithm

converged in two or three iterations, evenwith significant variation in
weighting factors between rendezvous and break away.

V. Global Fleet Assignment Problem
Given the optimized routes and costs for all possible pairings, it

remains to select compatible fleets. That is, by assigning each aircraft
to one formation, find the subset of all possible formations that
minimizes the total cost. This is known as the fleet assignment
problem.

A. Fleet Assignment Using a Mixed Integer Linear Program

Because each flight can only belong to one formation (or fly solo),
a mixed integer linear program (MILP) solver is used to generate the
optimal subset of formations that minimize the total cost. The
optimization problem, based on similar work by Xu et al. [21], is
formulated as follows: forNa aircraft, there areNf possible favorable
formations, that is, formations that produced a fuel savings, including
Na solo formations (those that do not produce savings are discarded).
A pairing pj;i ! 1, if and only if aircraft i is included in formation j.
Furthermore, if formation j is used, it will incur a cost of cj. The
binary choice is thenwhether formation j is chosen in the solution (so
xj ! 1) or not (xj ! 0). Therefore, the MILP is used to optimally
assign each aircraft into a formation by choosing the state of each xj.
That is,

minimize
x

XNf

j!1
cjxj;

subject to
XNf

j!1
pj;ixj ! 1; ∀ i ∈ f1; : : : ; Nag

xj binary; ∀ i ∈ f1; : : : ; Nag (17)

Therefore, there are Nf variables and Na constraints, and so solving
in such a way is highly effective for smaller problems. However, an
MILP’s complexity grows with the number of variables, number of
constraints, and the convexity of the problem [48]. The nonconvex
nature of this problem (i.e., there are many possible local minimum)
means that finding a global minimum is already a difficult task.
Therefore, as the size of the problem increases (i.e., the number of
aircraft or formations), the amount of resources needed to solve the
assignment problem will also increase.

B. Combinatorial Impact

For a formation size n, from a list of Na possible aircraft, the
number of possible formations that can be made is calculated by the
binomial coefficient:

Na choose n !
!
Na
n

"
! Na!

n!"Na − n$!
for 0 ≤ n ≤ Na (18)

This number grows dramatically with an increase to either Na or n
and is the main reason for developing the quick geometric approach
of Sec. II for calculating the formation routes. When considering the
global problem, although the number of routesNa will vary themost,
it is combinatorially more important to keep n low. Very roughly
speaking, an increase toNa by an order ofmagnitudewill increase the
number of combinations by n orders of magnitude. Similarly, with
Na fixed, increasing n by one results in an increase in combinations
by a factor ofNa∕"n# 1$. Therefore, an increase in n by two would
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then increase combinations by N2
a∕"n# 2$"n# 1$. This increase in

combinations impacts both aspects of the problem, first the routing
problem, as more formation routes need to be calculated, and second,
the assignment problem, with each additional flight adding a
constraint and each additional combination adding a variable.
The geometric method has been developed to be a very fast way of

calculating individual formation routes, making it possible to
evaluate lots of combinations very quickly. However, there comes a
point when the combinatorial effect overcomes this computational
advantage. One can see from Table 1 how changes in Na or n can
quickly affect the number of combinations that need to be evaluated.
Therefore, for much larger problems, it is a balancing act between the
number of flights Na considered and the size of the formation n.
Despite this, it should not provide too much of an issue, because
global lists of flights can be partitioned in a number of ways to keep n
relatively low. Examples of partitioning are direction and location,
such as eastbound transatlantic; time of day, morning or evening; and
individual airline companies. These choices are, on the most part,
outside the scope of this paper, however, the following case study
demonstrates an example of 210 eastbound transatlantic flights.

VI. Case Study: Formations for Transatlantic Flights
Using the methodology of the preceding sections, an OAG dataset

for the month of September 2010 of 210 common transatlantic
flights, between 26 U.S. and 42 European airports is now examined.
Each flight has a particular aircraft to fly it, and so individual
performance factors can be taken from BADA. The aim is to create
formations to minimize the total cost (kilograms of fuel burnt) of the
entire fleet. Each flight is treated as nongreedy, doing what is best for
the fleet as a whole rather than individual gain. In this sense, the fleet
could be thought to represent a single airline company. Furthermore,
remaining with our initial assumptions, the results are also time free,
based on the optimal location for joining a fleet and breaking away
and are therefore not constrained to a specific schedule. To directly
compare time-free solo routes with time-free formation routes,
aircraft are instructed to fly at speeds thatminimize their fuel burn (or,
while in formation, the total fuel burn of all members). An analysis of
the possible impact of scheduling on formation flight is explored in
Sec. VI.D.
As discussed in Sec. II.F, minimum horizontal distances to climb

and descend are used and are calculated based on rates of climb and
descent in BADA. The inclusion of this ensures the join and break
points lie suitably far away from each airport, to allow each aircraft to
reach a fixed cruising altitude of 37,000 ft. The case study is evaluated
for two maximum formation sizes, which are the n ! 2 and n ! 3
problems. Finally, the fixed proportional discounting rates of λf;2 !
0.9 and λf;3 ! 0.85 (from Sec. II.A) are used to represent the fuel-
saving benefits of formation flight.
All themethods to find the optimal formation route outlinedwithin

this paper have been implemented in MATLAB. The MILP used in

the assignment problem is first formulated inMATLAB and then run
through the Gurobi [51] MILP solver. Both stages of the problem
were implemented on the same machine: MacBook Pro 2.4 GHz i5
with 16 GB of RAM.

A. Formations of up to Two Aircraft

Using all the methods outlined in this paper, all 21,975 formations
of size 2 were calculated along with each corresponding fuel-burn
cost. This took roughly 0.0005 s per combination, resulting in a total
time of around 11 s. Then, given the cost for each possible formation
(including solo flights), the MILP was run, taking a further 3 s, and
resulted in the 210 flights being assigned to 105 formations of size 2
(Fig. 10b), with the entire process taking 14 s. Compared with solo
flight, the total average savings was a very reasonable 8.7%.

B. Formations of up to Three Aircraft

For formations of size 3, there are 1,521,520 possibilities, followed
by the 21,945 formations of size 2, bringing the total number of
combinations to evaluate to 1,543,465. The 70× increase in com-
binations has lead to a 245× increase to enumeration time. This is due
to the increased complexity of calculating formations of size 3 and the
need to evaluate all different orders of joining and breaking away. The
mean individual formation computation time has increased to
roughly 0.0018 s (about three times that of a formation of size 2) and
amounts to 45 min for all combinations.
TheMILP also suffers from the increase in combinations and takes

just over 10 min to optimally assign the formations. Therefore, an
optimal solution can be calculated for formations of size 3 in under an
hour. This run time could be substantially reduced, if required, by
parallel evaluation of the formation costs.
The 210 flights were assigned into 70 formations of size 3

(Fig. 10c). The average fuel-burn savings of the formations of size 3,
compared with solo flight, was 13.1%.

C. Comparison of Results
The first observation is that many formations were made between

routes that required little deviation from their original solo path (the
levels of deviation between formation and solo routes can been seen
in Table 3). Even though distance to climb and descend restrictions
were implemented, many pairings found the best gain to be between
other flights that shared either their departure or destination airport
(all flights are distinct, and so could not share both). These low
deviations also mean a minimal increase to both the amount of
reserve and main fuel required for each flight.
For n ! 2, all aircraft were assigned into pairs, and so there were

105 final pairings. Of these pairings, 72 (69%) shared either a
departure or destination airport. The total formation deviation (i.e.,
the total difference in distance between the formation and solo route
for all formation members) ranges from 0 to 240 km, whereas the
average over the whole fleet remains low at around 26 km for the
entire formation, or 13 km per formation member.
For n ! 3, the 210 flights were all assigned into 70 formations of

three. For the 70 formations, 69 (99%) shared at least one common
airport with other fleet members. Furthermore, of these, 29 (41%)
shared exactly one airport, 26 (37%) shared exactly two, and 14
(20%) shared exactly three airports (because all flights were unique,
the maximum number of common airports possible was three). The
total deviation ranged between 0 and 530 km with an average fleet
total of 70 km, resulting in a per-aircraft average deviation of
just 23 km.

Table 1 Binomial coefficients for varying number of
aircraft n or formation size k

100 aircraft 500 aircraft 1000 aircraft
Formation size 2 4,950 124,750 499,500
Formation size 3 161,700 20,708,500 166,167,000
Formation size 4 3,921,225 2,573,031,125 41,417,124,750

Table 2 Fuel savings against their respective solo routes for formations of size 2 and 31617

Computation time, minutes:seconds
Maximum formation size Combinations Route enumeration MILP solve Fuel savings, %
2 21,945 00:11 00:03 8.7
3 1,521,520 45:00 10:12 13.1

18
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The results in Table 3 along with Fig. 11 show that the formations
that achieve greater savings are, as expected, those that need to
deviate from their solo routes the least. There is a clear trend in Fig. 11
toward lower deviation and higher fuel-burn percentage savings
(some of the outlying results are likely due to the geographical
sampling of the airports, for example, the west and east coasts of the
United States).

D. Analysis of Aircraft Scheduling on Formation Flight

The development in this paper has optimized purely for fuel use
and ignored the impact of scheduling. However, scheduling factors
such as crew rosters, passenger demand, and airport capacity all
influence flight timing and are included in multi-objective schedule
optimization [21,52–54]. The incorporation of scheduling objectives
in formation flight is beyond the scope of this paper. However, this
section shows how the effect of formation flight on scheduling can be
analyzed and constrained.

One indicator of likely schedule impact is the deviation. The per-
aircraft average deviations in route distance between formations and
their solo routes, as outlined in Table 3, are relatively low at around
20 km (or roughly 1 min at Mach 0.8). This means that per-aircraft
flight durations for formations can remain close to their solo
counterparts.
Given a formation and its optimized route, determined using

the methods presented, the formation’s schedule impact can be
evaluated. This is measured in terms of the total change in takeoff
times in minutes, assuming that all flights in the formation land no
later than their original scheduled landing time. It is equivalent to the
total delay if no flight takes off earlier, or any other sharing of the
schedule “shift” between the flights to accommodate the formation.
Once all the formations have been evaluated, it is then possible to
discard all those whose takeoffs are shifted by more than a certain
threshold, prior to solving the assignment problem as in Sec. V.
Figure 12a shows the variation in total fuel savings with the

maximum permitted takeoff change for the transatlantic case study in

Fig. 10 Transatlantic formation routes.

Table 3 Deviation (kilometers) in route distance between formations and their solo routes

Formation total Per aircraft
Formation size With common airport Minimum Average Maximum Minimum Average Maximum
2 72 (69%) 0 26 240 0 13 190
3 69 (99%) 0 70 530 0 23 308
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formations of two aircraft. As expected, the fuel savings decreases as
the takeoff change limit is tightened. However, roughly 8% savings is
still available without changing any takeoffs by more than an hour,
and 6% is available with no changes of more than 5 min. The
background of this result is explored in Fig. 12b, which shows that,
even with very long schedule shifts available, the average takeoff
time change is about 2 h. The implication is that the transatlantic
flight set in the case study includes a large selection of flight pairs that
can benefit from formation, including many with compatible
timing.

E. Utilization of Potential Savings

Finally, it is interesting to analyze the fuel-burn savings compared
with the maximum-achievable potential of the routes. For n ! 2,
λf;2 ! 0.9, meaning if both aircraft started and finished in formation,
observing the fuel-burn savings over the entire flight, the maximum
achievable savings would be 10%. As outlined in Sec. II.F, aircraft
need time to climb and descend, and so cannot save fuel over the
entire flight. Allowing for this means that, in the case of the 210
transatlantic flights, on average, for 7.2% of the flight, the aircraft is
unable to achieve any fuel reduction benefits. This leaves 92.8% of
the flight available for fuel-burn savings by flying in formation.
With all this taken into account, the average maximum-achievable

formation savings is actually 9.3%. Therefore, for n ! 2, the case
study results of 8.7% represent a 94% utilization of the possible
savings. Similarly, for n ! 3, λf;3 ! 0.85, which leads to an average
maximum-achievable savings of 13.9%. In this case, the 70
formations of three achieved 13.1%, resulting in a utilization of 94%.
Therefore, what this utilization metric can quickly express is how

well suited a group of flights is to flying in formation, with the
eastbound transatlantic case study being a good example. The routes
are all in a similar geographical location, heading in a similar
direction, and so achieve a high percentage of utilization.

VII. Conclusions
This paper has explored a method for finding optimal routes for

formation flight. First, an extension to the Fermat–Torricelli problem
allowed the decoupling of a complex problem, providing a fast and
effective framework to find optimal formations for a given list of
routes. Using a set of general aircraft performance coefficients from
Eurocontrol’s Base of Aircraft Database allows a more accurate
representation of routes containing distinct aircraft to be incorporated
into the solution. The introduction of a differential aircraft weighting
scheme allows formation fleets to be more accurately assigned and
routed to account for differing aircraft efficiencies. The simple
iterative-updating scheme also allows room for possible expansion in
future, such as a more accurate calculation of the specific pro-
portionality discount factor between particular aircraft pairings.
Themethods and fundamentals of this paper have been designed to

be both extensible and scalable, allowing assessment of the potential
of formation flight, on large sets of routes and varying sizes of
formation fleets, while remaining computationally tractable. The
analytic nature of the proposed method means millions of possible
combinations of formations can be quickly calculated, allowing a
mixed integer linear program to tackle the global fleet assignment
problem. The outlined methods have then been tested against a case
study of a representative region of possible formation flight for 210
transatlantic flight routes. Despite some of the discussed
combinatorial impacts, the globally optimal formation fleets for the
case study were found in under an hour. Results show possible
average fuel-burn savings against solo flight of around 8.7% for
formations of two and 13.1% for formations of up to three, although
even for a relatively small problem, the optimal results had a high
degree of utilization against maximum achievable savings.
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